Skip to main content
Dataset Overview | National Centers for Environmental Information (NCEI)

Results from growth rate experiment with the diatom Thalassiosira weissflogii in semi-continuous culture; conducted at the Thornton lab, TAMU from 2007-2012 (Diatom EPS Production project) (NCEI Accession 0278830)

browse graphicGraphic not available.
This dataset contains biological and survey - biological data collected at TAMU during deployment lab_Thornton at College Station, Texas, 77843 on 2014-04-07. These data include bacterial abundance, chlorophyll a, and diatom abundance. The instruments used to collect these data include Carlo-Erba NA-1500 Elemental Analyzer, Hemocytometer, Microscope-Fluorescence, Microscope-Optical, Sequoia Scientific Laser In-Situ Sediment Size Transmissometer, and Turner Designs 700 Laboratory Fluorometer. These data were collected by Daniel C.O. Thornton of Texas A&M University as part of the "Effect of Temperature on Extracellular Polymeric Substance Production (EPS) by Diatoms (Diatom EPS Production)" project. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) submitted these data to NCEI on 2019-11-21.

The following is the text of the dataset description provided by BCO-DMO:

Growth rate experiment with the diatom Thalassiosira weissflogii in semi-continuous culture.

Dataset Description:
Data from laboratory experiment on growth rate and transparent exopolymer particles (TEP) in the diatom Thalassiosira weissflogii (CCMP 1051) in a semi-continuous culture (four replicate cultures).

Related references:
Chen, J. 2014. Factors affecting carbohydrate production and the formation of transparent exopolymer particles (TEP) by diatoms. Ph.D. dissertation, Texas A&M University, College Station, TX.

Chen, J., Thornton, D.C.O. (in revision). Effect of growth rate on TEP production and aggregation of Thalassiosira weissflogii. Journal of Phycology.
  • Cite as: Thornton, Daniel C.O. (2023). Results from growth rate experiment with the diatom Thalassiosira weissflogii in semi-continuous culture; conducted at the Thornton lab, TAMU from 2007-2012 (Diatom EPS Production project) (NCEI Accession 0278830). [indicate subset used]. NOAA National Centers for Environmental Information. Dataset. https://www.ncei.noaa.gov/archive/accession/0278830. Accessed [date].
gov.noaa.nodc:0278830
Download Data
  • HTTPS (download)
    Navigate directly to the URL for data access and direct download.
  • FTP (download)
    These data are available through the File Transfer Protocol (FTP). FTP is no longer supported by most internet browsers. You may copy and paste the FTP link to the data into an FTP client (e.g., FileZilla or WinSCP).
Distribution Formats
  • TSV
Ordering Instructions Contact NCEI for other distribution options and instructions.
Distributor NOAA National Centers for Environmental Information
+1-301-713-3277
NCEI.Info@noaa.gov
Dataset Point of Contact NOAA National Centers for Environmental Information
ncei.info@noaa.gov
Coverage Description College Station, Texas, 77843
Time Period 2014-04-07 to 2014-04-07
Spatial Bounding Box Coordinates
West:
East:
South:
North:
Spatial Coverage Map
General Documentation
Associated Resources
  • Biological, chemical, physical, biogeochemical, ecological, environmental and other data collected from around the world during historical and contemporary periods of biological and chemical oceanographic exploration and research managed and submitted by the Biological and Chemical Oceanography Data Management Office (BCO-DMO)
    • NCEI Collection
      Navigate directly to the URL for data access and direct download.
  • Thornton, D. C. (2014) Results from growth rate experiment with the diatom Thalassiosira wessiflogii in semi-continuous culture; conducted at the Thornton lab, TAMU from 2007-2012 (Diatom EPS Production project). Biological and Chemical Oceanography Data Management Office (BCO-DMO). Dataset version 2014-04-07. https://doi.org/10.1575/1912/bco-dmo.506135.1
  • Parent ID (indicates this dataset is related to other data):
    • gov.noaa.nodc:BCO-DMO
Publication Dates
  • publication: 2023-05-27
Data Presentation Form Digital table - digital representation of facts or figures systematically displayed, especially in columns
Dataset Progress Status Complete - production of the data has been completed
Historical archive - data has been stored in an offline storage facility
Data Update Frequency As needed
Supplemental Information
Acquisition Description:
Growth of the diatom
Thalassiosira weissflogii (CCMP 1051) was obtained from the National Center for Culture of Marine Algae and Microbiota (NCMA). The diatom was grown in artificial seawater (Berges et al. 2001) in nitrogen-limited 1000 ml semi-continuous cultures at a sequence of dilution rates. The macronutrient concentrations in the artificial seawater recipe were modified from Berges et al. (2001) to affect nitrogen limitation; concentrations of nitrogen, phosphorus and silicon were 60 µM (as NaNO 3 ), 100 µM (NaH 2 PO 4 ), and 100 µM (Na 2 SiO 3 ), respectively. Culture temperature was maintained at 20 ± 0.1 °C throughout the experiment. Photon flux density on the surface of the culture bottles was 150 µmol m -2 s -1 . The cultures were stirred with 2.5 cm long stir bars using magnetic stirrers at 120 revolutions per minute. The cultures were grown at a sequence of dilution rates (0.3, 0.5, 0.7, 0.9 and 0.3 day -1 ) affected by daily dilution at 10:00 am every day. To induce a dilution rate of 0.3 day -1 , 0.3 of the culture volume (300 ml) was removed and replaced with 300 ml of fresh medium to maintain a constant total culture volume (1000 ml).

Measures of phytoplankton abundance and biomass
Counts of 400 cells from each replicate culture were made by light microscopy using a hemocytometer (Fuchs-Rosenthal ruling, Hauser Scientific) (Guillard and Sieracki 2005) from samples preserved in Lugol’s iodine (Parsons et al. 1984). Cell volume was determined using live cells (Menden-Deuer and Lessard 2000). The volume of 100 diatoms from each replicate culture was determined by measuring cell length (pervalver length) and width (valver length) at 400x magnification using a light microscope (Axioplan 2, Carl Zeiss MicroImaging). Cell volume was calculated based on the assumption that T. weissflogii is a cylinder.

Chlorophyll a concentrations in the cultures was determined by fluorescence (Arar and Collins 1997). Chlorophyll a concentration 90% acetone extractions from biomass retained on GF/C (Whatman) were measured using a Turner Designs 700 fluorometer, which was calibrated using chlorophyll a standards (Sigma) (Arar and Collins 1997). The extract was diluted with 90% acetone if the chl. a concentration were too high.

The carbon and nitrogen content of particulate organic matter in the cultures was determined by elemental analysis using a Carlo Erba NA1500 Elemental Analyzer. Standards were acetanilide, methionine, graphite (USGS 24, USGS 40, and USGS 41) (Verardo et al. 1990).

Bacteria abundance
Bacteria (400 cells) were counted using an epifluorescence microscope (Axioplan 2, Carl Zeiss MicroImaging) after staining with 4'6-diamidino-2-phenylindole dihydrochloride (DAPI) (Porter and Feig 1980) at a final concentration of 0.25 µg ml -1 .

Cell permeability
Uptake and staining with the membrane-impermeable SYTOX Green (Invitrogen) was used to determine what proportion of the diatom population had permeable cell membranes (Veldhuis et al. 2001, Franklin et al. 2012). Four hundred cells were examined using an epifluorescence microscope and the number of cells that stained with SYTOX Green was enumerated.

Total carbohydrate
Total carbohydrate concentrations were determined in unfiltered liquid samples from the cultures using the phenol-sulfuric acid (PSA) method (Dubois et al. 1956) calibrated with d-glucose. The concentration of total carbohydrate was expressed as glucose equivalents.

TEP staining and analysis
Transparent exopolymer particles (TEP) were sampled according to Alldredge et al. (1993) and TEP abundance was enumerated by image analysis (Logan et al. 1994, Engel 2009). Ten photomicrographs were taken of each slide and the area of 100 TEP particles from each replicate culture was determined after manually drawing around each particle using Axio Vision 4.8 (Carl Zeiss MicroImaging ) image analysis software.

Particle size distribution and aggregation
The particle size distribution (PSD) and volume concentration of particles in the T. weissflogii cultures was measured using laser scattering following the method of Rzadkowolski and Thornton (2012) using a Laser In Situ Scattering and Transmissometry instrument (LISST-100X, Type C; Sequoia Scientific). Sample (150 ml) from each replicate culture was placed into a chamber attached to the LISST and the PSD was measured 100 times at a rate of 1 Hz. The PSD of the culture was blank corrected by subtracting the PSD of 0.2 µm filtered artificial seawater.

References cited
Alldredge, A. L., Passow, U. & Logan B. E. 1993. The abundance and significance of a class of large, transparent organic particles in the ocean. Deep-Sea Res . Oceanogr ., I. 40: 1131-1140. doi: 10.1016/0967-0637(93)90129-Q

Arar, E. J. & Collins, G. B. 1997. Method 445.0. In Vitro Determination of Chlorophyll a and Pheophytin a in Marine and Freshwater Algae by Fluorescence U.S. Environmental Protection Agency, Cincinnati, Ohio.

Berges, J. A., Franklin D. J. & Harrison, P. J. 2001. Evolution of an artificial seawater medium: Improvements in enriched seawater, artificial water over the last two decades. J. Phycol . 37:1138-1145. doi: 10.1046/j.1529-8817.2001.01052.x

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356. doi: 10.1021/ac60111a017

Franklin, D. J., Airs, R. L., Fernandes, M., Bell, T. G., Bongaerts, R. J., Berges, J. A. & Malin, G. 2012. Identification of senescence and death in Emiliania huxleyi and Thalassiosira pseudonana : Cell staining, chlorophyll alterations, and dimethylsulfoniopropionate (DMSP) metabolism. Limnol. Oceanogr. 57: 305–317. doi:10.4319/lo.2012.57.1.0305

Guillard, R. R. L. & Sieracki, M. S. 2005. Counting cells in cultures with the light microscope. In Andersen R. A. [Ed.] Algal Culturing Techniques . Elsevier Academic Press, Burlington, MA, pp. 239-252.

Logan, B. E., Grossart, H. P. & Simon, M. 1994. Direct observation of phytoplankton, TEP and aggregates on polycarbonate filters using brightfield microscopy. J. Plankton Res. 16: 1811-1815.doi: 10.1093/plankt/16.12.1811

Menden-Deuer S. & Lessard, E. J. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protists plankton. Limnol. Oceanogr. 45: 569- 579. doi: 10.4319/lo.2000.45.3.0569

Parsons, T. R., Maita, Y. & Lalli, C. M. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press , Oxford, UK.

Passow, U. & Alldredge, A. L. 1995. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP). Limnol. Oceanogr. 40: 1326-1335. doi: 10.4319/lo.1995.40.7.1326

Porter, K. G. & Feig, Y. S. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25:943–948. doi: 10.4319/lo.1980.25.5.0943

Rzadkowlski, C. E. & Thornton, D. C. O. 2012. Using laser scattering to identify diatoms and conduct aggregation experiments. Eur. J. Phycol. 47:30-41. doi: 10.1080/09670262.2011.646314

Veldhuis, M. J. W., Kraay, G. W. & Timmermans, K. R. 2001. Cell death in phytoplankton: correlation between changes in membrane permeability, photosynthetic activity, pigmentation and growth. Eur. J. Phycol. 36: 167–177. doi: 10.1080/09670260110001735318

Verardo, D. J., Froelich, P. N. & McIntyre, A. 1990. Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 analyzer. Deep-Sea Res.A 37:157-165. doi: 10.1016/0198-0149(90)90034-S
Purpose This dataset is available to the public for a wide variety of uses including scientific research and analysis.
Use Limitations
  • accessLevel: Public
  • Distribution liability: NOAA and NCEI make no warranty, expressed or implied, regarding these data, nor does the fact of distribution constitute such a warranty. NOAA and NCEI cannot assume liability for any damages caused by any errors or omissions in these data. If appropriate, NCEI can only certify that the data it distributes are an authentic copy of the records that were accepted for inclusion in the NCEI archives.
Dataset Citation
  • Cite as: Thornton, Daniel C.O. (2023). Results from growth rate experiment with the diatom Thalassiosira weissflogii in semi-continuous culture; conducted at the Thornton lab, TAMU from 2007-2012 (Diatom EPS Production project) (NCEI Accession 0278830). [indicate subset used]. NOAA National Centers for Environmental Information. Dataset. https://www.ncei.noaa.gov/archive/accession/0278830. Accessed [date].
Cited Authors
Principal Investigators
Contributors
Resource Providers
Points of Contact
Publishers
Acknowledgments
Theme keywords NODC DATA TYPES THESAURUS NODC OBSERVATION TYPES THESAURUS WMO_CategoryCode
  • oceanography
BCO-DMO Standard Parameters Global Change Master Directory (GCMD) Science Keywords Originator Parameter Names
Data Center keywords NODC COLLECTING INSTITUTION NAMES THESAURUS NODC SUBMITTING INSTITUTION NAMES THESAURUS Global Change Master Directory (GCMD) Data Center Keywords
Platform keywords BCO-DMO Platform Names Global Change Master Directory (GCMD) Platform Keywords
Instrument keywords NODC INSTRUMENT TYPES THESAURUS BCO-DMO Standard Instruments Global Change Master Directory (GCMD) Instrument Keywords Originator Instrument Names
Place keywords Provider Place Names
Project keywords BCO-DMO Standard Projects Provider Deployment IDs Provider Funding Award Information
Keywords NCEI ACCESSION NUMBER
Use Constraints
  • Cite as: Thornton, Daniel C.O. (2023). Results from growth rate experiment with the diatom Thalassiosira weissflogii in semi-continuous culture; conducted at the Thornton lab, TAMU from 2007-2012 (Diatom EPS Production project) (NCEI Accession 0278830). [indicate subset used]. NOAA National Centers for Environmental Information. Dataset. https://www.ncei.noaa.gov/archive/accession/0278830. Accessed [date].
Data License
Access Constraints
  • Use liability: NOAA and NCEI cannot provide any warranty as to the accuracy, reliability, or completeness of furnished data. Users assume responsibility to determine the usability of these data. The user is responsible for the results of any application of this data for other than its intended purpose.
Fees
  • In most cases, electronic downloads of the data are free. However, fees may apply for custom orders, data certifications, copies of analog materials, and data distribution on physical media.
Lineage information for: dataset
Processing Steps
  • 2023-05-27T05:09:30Z - NCEI Accession 0278830 v1.1 was published.
Output Datasets
Acquisition Information (collection)
Instrument
  • fluorometer
  • microscope
Last Modified: 2024-05-31T15:15:28Z
For questions about the information on this page, please email: ncei.info@noaa.gov