Skip to main content
Dataset Overview | National Centers for Environmental Information (NCEI)

Trichodesmium data from R/V Atlantic Explorer cruise AE1409 in the Western Tropical North Atlantic from May 2014 (P Processing by Tricho project) (NCEI Accession 0278746)

browse graphicGraphic not available.
This dataset contains chemical data collected on R/V Atlantic Explorer during cruise AE1409 from 2014-05-10 to 2014-05-25. These data include nitrogen fixation rate and reactive phosphorus (PO4). The instruments used to collect these data include In-situ incubator, LI-COR Biospherical PAR Sensor, Liquid Scintillation Counter, Plankton Net, and Water Temperature Sensor. These data were collected by Sonya T. Dyhrman of Lamont-Doherty Earth Observatory and Benjamin A.S. Van Mooy of Woods Hole Oceanographic Institution as part of the "Dissolved Phosphorus Processing by Trichodesmium Consortia: Quantitative Partitioning, Role of Microbial Coordination, and Impact on Nitrogen Fixation (P Processing by Tricho)" project. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) submitted these data to NCEI on 2021-05-24.

The following is the text of the dataset description provided by BCO-DMO:

Trichodesmium data from cruise AE1409

Dataset Description:
Trichodesmium, nitrogen fixation rates, and P uptake data from cruise AE1409.
  • Cite as: Van Mooy, Benjamin A.S.; Dyhrman, Sonya T. (2023). Trichodesmium data from R/V Atlantic Explorer cruise AE1409 in the Western Tropical North Atlantic from May 2014 (P Processing by Tricho project) (NCEI Accession 0278746). [indicate subset used]. NOAA National Centers for Environmental Information. Dataset. https://www.ncei.noaa.gov/archive/accession/0278746. Accessed [date].
gov.noaa.nodc:0278746
Download Data
  • HTTPS (download)
    Navigate directly to the URL for data access and direct download.
  • FTP (download)
    These data are available through the File Transfer Protocol (FTP). FTP is no longer supported by most internet browsers. You may copy and paste the FTP link to the data into an FTP client (e.g., FileZilla or WinSCP).
Distribution Formats
  • TSV
Ordering Instructions Contact NCEI for other distribution options and instructions.
Distributor NOAA National Centers for Environmental Information
+1-301-713-3277
NCEI.Info@noaa.gov
Dataset Point of Contact NOAA National Centers for Environmental Information
ncei.info@noaa.gov
Time Period 2014-05-10 to 2014-05-25
Spatial Bounding Box Coordinates
West: -64.9907
East: -53.2711
South: 9.8155
North: 27.8657
Spatial Coverage Map
General Documentation
Associated Resources
  • Biological, chemical, physical, biogeochemical, ecological, environmental and other data collected from around the world during historical and contemporary periods of biological and chemical oceanographic exploration and research managed and submitted by the Biological and Chemical Oceanography Data Management Office (BCO-DMO)
    • NCEI Collection
      Navigate directly to the URL for data access and direct download.
  • Van Mooy, B. A., Dyhrman, S. T. (2017) Trichodesmium data from R/V Atlantic Explorer cruise AE1409 in the Western Tropical North Atlantic from May 2014 (P Processing by Tricho project). Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2017-07-20. https://doi.org/10.26008/1912/bco-dmo.709621.1
  • Parent ID (indicates this dataset is related to other data):
    • gov.noaa.nodc:BCO-DMO
Publication Dates
  • publication: 2023-05-26
Data Presentation Form Digital table - digital representation of facts or figures systematically displayed, especially in columns
Dataset Progress Status Complete - production of the data has been completed
Historical archive - data has been stored in an offline storage facility
Data Update Frequency As needed
Supplemental Information
Acquisition Description:
All data collected as described in Van Mooy et al (2015).

Sampling - Trichodesmium colonies were collected with surface water net tows along a cruise transect in the western North Atlantic aboard the R/V Atlantic Explorer (AE1409) during May 2014. Sampling occurred at the same time each day (~7:30-8:30 am) using nets with a mesh size of 130 um. Nets were deployed and hauled through the surface water column 6 times before recovery. Individual Trichodesmium colonies were isolated and washed three times by successive transfer through fresh 0.2 um sterile-filtered local surface seawater. A pooled sample of colonies was isolated and processed from each station. For each sample, an average of ~30 cleaned colonies were transferred onto 47 mm 5 um pore size polycarbonate filters, gently vacuum filtered to remove excess liquid, flash frozen and stored in liquid nitrogen until extraction and sequencing. There were no discernable changes in average colony size from one station to another across the transect. In order to broadly assess the microbiome composition of the North Atlantic Trichodesmium populations, colony composition was sampled to reflect the distribution of Trichodesmium colony morphology found in net tows. At all stations raft type colonies were much more abundant than puff or bowtie variants with approximately 30 rafts to 2 puff/bowtie colonies. As such, the data largely reflect the dominant raft morphology.

Nitrogen Fixation Rates - N2 fixation was measured using the acetylene reduction technique as previously described (Capone, 1993; Paerl, 1994). Briefly, approximately 20 Trichodesmium colonies were placed in a 60 mL polycarbonate bottle containing 60 mL of filtered seawater. A 1 mL aliquot of acetylene was injected into the bottle through a septum cap, the bottle was gently inverted, and allowed to incubate in an on-deck incubator at ambient temperature and light. The headspace of the bottle was analyzed for ethylene approximately every 30 minutes and the rate of ethylene production through acetylene reduction was determined by linear regression. All incubations were conducted in triplicate between approximately local noon and 2 PM.

Phosphate uptake rates - The incubation bottles were carried to a laboratory van that was designated solely for work with radioactive isotopes. Each incubation bottle was spiked with approximately 1.5 uCi of 33P-phosphoric acid. The final concentration of 33P-phosphate in the incubations was approximately 6 pmol L-1, which was likely approximately two orders of magnitude smaller than ambient phosphate concentrations. The bottles were capped and mixed by gently inverting. At each station, three incubations were dedicated to measuring 33P-phosphate uptake and three incubations were dedicated to measuring the chemical reduction of 33P-phosphate to P(III) compounds. The bottles were placed in a flow-through on-deck incubator that was maintained at surface seawater temperatures by continually flushing with the surface seawater from the ship’s pumping system. Temperature in the incubators was occasionally monitored with a waterproof temperature logger (Onset), and found to be within 1C of surface water temperature. The incubators used a combination of neutral density screening and blue transparent film to achieve a light intensity of mimicking PAR at roughly 20m, as confirmed using an underwater spherical quantum sensor (Li-Cor). At three occasions during the cruise (Stations 2, 4, and 9), an additional set of triplicate incubations for each measurement were terminated immediately (i.e. prior to incubation) and processed identically to the experimental incubations; data from these incubations were used to quantify background 33P signals in all of our measurements (i.e. analytical blanks). Background 33P was consistent at all three stations, and was averaged and then subtracted from all of the experimental results; the standard deviation of the background was propagated as analytical error. In all cases the 33P radioactivity recovered from the experimental incubations was three times greater than the background 33P radioactivity. Incubations proceeded for an average of 3.25 h before being terminated by vacuum (approximately 200 mbar) filtration on 25 mm diameter polycarbonate membranes (Millipore); a poresize of 0.2 um was used for whole community incubations and a poresize of 5.0 um was used for the Trichodesmium incubations. The membranes were quickly rinsed three times with freshly filtered (0.2 um poresize polycarbonate membrane) surface seawater. The membranes were then immediately placed in a liquid scintillation vial containing 10 mL of UltimaGold liquid (Perkin Elmer) scintillation cocktail, which was then shaken vigorously. After resting for a few hours, the 33P-radioacitivity in the vials was determined using a liquid scintillation counter (Perkin Elmer). A steady-state phosphate turnover rate was calculated by dividing the total 33P radioactivity retained on the membranes by the total 33P radioactivity added to the incubations and the incubation time. Turnover times (reciprocal of turnover rates) varied from between 15 and 50 hours (not shown), which is much longer than the incubation time and validates the steady-state calculation.

Phosphate concentrations - Phosphate in seawaters samples and incubations was quantified using MAGnesium Induced Coprecipitation (MAGIC) as described by Karl and Tien (1992).
Purpose This dataset is available to the public for a wide variety of uses including scientific research and analysis.
Use Limitations
  • accessLevel: Public
  • Distribution liability: NOAA and NCEI make no warranty, expressed or implied, regarding these data, nor does the fact of distribution constitute such a warranty. NOAA and NCEI cannot assume liability for any damages caused by any errors or omissions in these data. If appropriate, NCEI can only certify that the data it distributes are an authentic copy of the records that were accepted for inclusion in the NCEI archives.
Theme keywords NODC DATA TYPES THESAURUS NODC OBSERVATION TYPES THESAURUS WMO_CategoryCode
  • oceanography
BCO-DMO Standard Parameters Global Change Master Directory (GCMD) Science Keywords Originator Parameter Names
Data Center keywords NODC COLLECTING INSTITUTION NAMES THESAURUS NODC SUBMITTING INSTITUTION NAMES THESAURUS Global Change Master Directory (GCMD) Data Center Keywords
Platform keywords NODC PLATFORM NAMES THESAURUS BCO-DMO Platform Names Global Change Master Directory (GCMD) Platform Keywords ICES/SeaDataNet Ship Codes
Instrument keywords NODC INSTRUMENT TYPES THESAURUS BCO-DMO Standard Instruments Global Change Master Directory (GCMD) Instrument Keywords Originator Instrument Names
Place keywords Provider Place Names
Project keywords BCO-DMO Standard Projects Provider Cruise IDs Provider Funding Award Information
Keywords NCEI ACCESSION NUMBER
Use Constraints
  • Cite as: Van Mooy, Benjamin A.S.; Dyhrman, Sonya T. (2023). Trichodesmium data from R/V Atlantic Explorer cruise AE1409 in the Western Tropical North Atlantic from May 2014 (P Processing by Tricho project) (NCEI Accession 0278746). [indicate subset used]. NOAA National Centers for Environmental Information. Dataset. https://www.ncei.noaa.gov/archive/accession/0278746. Accessed [date].
Data License
Access Constraints
  • Use liability: NOAA and NCEI cannot provide any warranty as to the accuracy, reliability, or completeness of furnished data. Users assume responsibility to determine the usability of these data. The user is responsible for the results of any application of this data for other than its intended purpose.
Fees
  • In most cases, electronic downloads of the data are free. However, fees may apply for custom orders, data certifications, copies of analog materials, and data distribution on physical media.
Lineage information for: dataset
Processing Steps
  • 2023-05-26T09:07:47Z - NCEI Accession 0278746 v1.1 was published.
Output Datasets
Acquisition Information (collection)
Instrument
  • net - plankton net
  • PAR Sensor
  • scintillation counter
  • temperature sensor
Platform
  • RV Atlantic Explorer
Last Modified: 2024-05-31T15:15:28Z
For questions about the information on this page, please email: ncei.info@noaa.gov