Skip to main content
Dataset Overview | National Centers for Environmental Information (NCEI)

Amplicon sequence variants (ASVs) recovered from samples and their related identification as Pseudo-nitzschia taxa and the methods used from 2016-09-26 to 2019-11-25 (NCEI Accession 0278248)

browse graphicGraphic not available.
This dataset contains biological and survey - biological data collected on R/V Endeavor during cruises EN608, EN617, EN627, and EN644 from 2016-09-26 to 2019-11-25. These data include species. The instruments used to collect these data include Automated DNA Sequencer. These data were collected by Bethany D. Jenkins and Matthew Bertin of University of Rhode Island as part of the "RII Track-1: Rhode Island Consortium for Coastal Ecology Assessment, Innovation, and Modeling (C-AIM)" project. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) submitted these data to NCEI on 2021-04-29.

The following is the text of the dataset description provided by BCO-DMO:

Pseudo-nitzschia asv

Dataset Description:
Acquisition Description:
For most samples, plankton biomass for Pseudo-nitzschia DNA identification was collected by passing an average of 270 mL of surface seawater with a peristaltic pump across a 25 mm 5.0 mm polyester membrane filter (Sterlitech, Kent, WA, USA). Widths of some Pseudo-nitzschia spp. are < 5.0 mm (Lelong et al. 2012), but this size pore likely captured horizontally orientated cells and chains of cells, and was consistent with pore size used to examine toxicity. Filters were flash frozen in liquid nitrogen and stored at -80 °C until extraction. DNA was extracted using a modified version of the DNeasy Plant DNA extraction kit (Qiagen, Germantown, MD, USA) with an added bead beating step for 1 minute and QIA-Shredder column (Qiagen, Germantown, MD, USA) as reported in Chappell et al. 2019. Additionally, DNA was eluted in 30 µL with a second elution step of either 30 or 15 µL to maximize DNA yield. DNA was assessed for quality with a Nanodrop spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA) and quantified using a Qubit fluorometer (Invitrogen, Carlsbad, CA, USA) with the Broad Range dsDNA and High Sensitivity dsDNA kits (Thermo Fisher Scientific Inc., Waltham, MA, USA). DNA yields reported by the Qubit ranged from below the limit of detection to 26.5, with an average of 2.0 ng DNA / mL eluent. Long-Term Plankton Time Series (LTPTS) samples from October 2016 and March 2017 had an average of 300 mL surface seawater passed over a 25 mm 0.2 mm filter, were extracted following existing LTPTS methods of DNA extraction using the DNeasy Blood and Tissue Kit (Qiagen, Germantown, MD, USA) with an added bead beating step (Canesi and Rynearson 2016), and yielded average 0.9 ng DNA / mL eluent as measured by the Qubit. Net tow samples had 50 mL of concentrate was passed across a 0.22 µm pore size Sterivex filter unit (MilliporeSigma, Burlington, MA, USA), and were extracted with the same modified DNeasy Plant DNA extraction protocol as above, with 4x volumes of AP1 buffer and RNase A and beads added to the unit to account for the larger sample surface area, extraction occurring within the capped unit itself to maximize yield, and then the lysate removed with a sterile syringe and subsequent steps with adjusted volumes as appropriate. As expected, DNA yields were higher from the Sterivex units ranging from 2.4 – 54.0 ng DNA / mL eluent with an average of 13.7 ng DNA/ mL elution as measured by the Qubit. For the March 13, 2017 NBay samples, 125 mL of surface seawater was passed across a HV filter and extracted with the DNeasy Plant DNA extraction kit with scissors and no beads. As measured by the Qubit, the average DNA yield was 3.7 ng DNA / mL eluent. A negative control sample was prepared of a blank 25 mm 5.0 mm polyester membrane filter using extraction reagents which had no detectable DNA using the Qubit. There were two positive controls of mock communities comprised of two known Pseudo-nitzschia species from monocultures. The two Pseudo-nitzschia cultures were P. subcurvata collected from the Southern Ocean and P. pungens isolated from NBay (provided by J. Rines). One positive control was made by combining equal concentrations of extracted DNA with 1.0 ng DNA of each culture. The second positive control was created of equal cell abundance estimated to be captured onto the filters of the cultures prior to extraction. These negative and positive controls were prepared for sequencing and sequenced on the same plate as the other environmental samples.

The ITS1 has been targeted for amplification and analysis by ARISA previously for Pseudo-nitzschia identification in environmental samples (Hubbard, Rocap, and Armbrust 2008). A comparison of ITS1 appears to be much less conserved and is divergent enough across Pseudo-nitzschia that 41 different species can be identified using existing public sequencing data. The primers to target the ITS1 region of Pseudo-nitzschia used this existing forward primer sequence of the ITS1 region for eukaryotes: TCCGTAGGTGAACCTGCGG (White et al. 1990) and a custom reverse primer designed using 132 Pseudo-nitzschia ITS1 sequences from the NCBI nucleotide database (downloaded on 4/3/2019) from this nucleotide search: ((Pseudo-nitzschia[Organism]) AND internal transcribed spacer[Title]) NOT uncultured): CATCCACCGCTGAAAGTTGTAA. This reverse primer targets a conserved region in the 5.8S. All primer sequences are reported from 5’ – 3’. MiSeq adapter sequences were added to the beginning of the primer sequences for these full sequences used in this study: forward primer TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCCGTAGGTGAACCTGCGG and reverse primer GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCATCCACCGCTGAAAGTTGTAA. When checking the specificity of these primers using the NCBI nt database, it became known that sequences beyond Pseudo-nitzschia would also be amplified in this study including other diatoms and dinoflagellates; however, the large number of sequencing reads recovered on the MiSeq platform would circumvent this non-specific characteristic of the primers.

The accession numbers of the sequences used in this primer design are reported in Table S2 of Sterling et al. (in prep), along with a summary of Pseudo-nitzschia species expected to amplify with these based on the in silico design. The expected ranges for PCR products were from 235 – 370 bp as the size of the ITS1 region differs for some Pseudo-nitzschia taxa. Primers (Integrated DNA Technologies, Coralville, IA, USA) were HPLC purified, resuspended in 1x Tris-Acetate-EDTA (TAE) buffer, and then working stocks created in diethylpyrocarbonate (DEPC)-treated H2O. About 4 ng of extracted DNA was used for each PCR reaction. If, according to the Qubit quantification, the DNA concentration was less than 2 ng mL-1 or below the limit of detection, it was then used as is, and just 2 mL was added to the PCR reaction. PCR reactions were set up on ice, in a 1x reaction in 25 mL total volume. Final primer concentration was 0.5 mM and polymerase was Phusion Hot Start High-Fidelity Master Mix (Thermo Fisher Scientific Inc., Waltham, MA, USA). There were two cycles with different annealing temperatures, the first with an annealing temperature specific to the loci-specific region and the second set of cycles with an annealing temperature that also takes the MiSeq adapter sequence into account (Canesi and Rynearson 2016). PCR conditions used were initial denaturation for 30 seconds at 98 °C, 15 cycles of the following: denaturation for 10 seconds at 98 °C, annealing for 30 seconds at 64.1 °C , extension for 30 seconds at 72 °C, and 15 cycles with the same conditions except a higher annealing temperature of 72 °C , and then a final extension for 10 minutes at 72 °C , and a holding temperature of 10 °C until stored in the -20 °C freezer. PCR products were visualized on a 1% agarose gel before submission to the URI Genomics and Sequencing Center (Kingston, RI, USA) where library preparation and sequencing were performed on a 2x300 bp MiSeq run (Illumina, Inc., San Diego, CA, USA). There were 193 environmental samples were sequenced, along with two positive controls of Pseudo-nitzschia DNA from cultures and one negative control, for a total of 196 samples using two sets of MiSeq indices on the same sequencing plate. It was deemed appropriate to multiplex this plate as estimated read depth to recover Pseudo-nitzschia sequences was predicted to be lower than usual.
  • Cite as: Jenkins, Bethany D.; Bertin, Matthew (2023). Amplicon sequence variants (ASVs) recovered from samples and their related identification as Pseudo-nitzschia taxa and the methods used from 2016-09-26 to 2019-11-25 (NCEI Accession 0278248). [indicate subset used]. NOAA National Centers for Environmental Information. Dataset. https://www.ncei.noaa.gov/archive/accession/0278248. Accessed [date].
gov.noaa.nodc:0278248
Download Data
  • HTTPS (download)
    Navigate directly to the URL for data access and direct download.
  • FTP (download)
    These data are available through the File Transfer Protocol (FTP). FTP is no longer supported by most internet browsers. You may copy and paste the FTP link to the data into an FTP client (e.g., FileZilla or WinSCP).
Distribution Formats
  • TSV
Ordering Instructions Contact NCEI for other distribution options and instructions.
Distributor NOAA National Centers for Environmental Information
+1-301-713-3277
NCEI.Info@noaa.gov
Dataset Point of Contact NOAA National Centers for Environmental Information
ncei.info@noaa.gov
Time Period 2016-09-26 to 2019-11-25
Spatial Bounding Box Coordinates
West: -71.42
East: -70.8626
South: 40.206
North: 41.6716
Spatial Coverage Map
General Documentation
Associated Resources
  • Biological, chemical, physical, biogeochemical, ecological, environmental and other data collected from around the world during historical and contemporary periods of biological and chemical oceanographic exploration and research managed and submitted by the Biological and Chemical Oceanography Data Management Office (BCO-DMO)
    • NCEI Collection
      Navigate directly to the URL for data access and direct download.
  • Jenkins, B. D., Bertin, M. (2021) Amplicon sequence variants (ASVs) recovered from samples and their related identification as Pseudo-nitzschia taxa and the methods used. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2021-04-05. https://doi.org/10.26008/1912/bco-dmo.847469.1
  • Parent ID (indicates this dataset is related to other data):
    • gov.noaa.nodc:BCO-DMO
Publication Dates
  • publication: 2023-05-15
Data Presentation Form Digital table - digital representation of facts or figures systematically displayed, especially in columns
Dataset Progress Status Complete - production of the data has been completed
Historical archive - data has been stored in an offline storage facility
Data Update Frequency As needed
Purpose This dataset is available to the public for a wide variety of uses including scientific research and analysis.
Use Limitations
  • accessLevel: Public
  • Distribution liability: NOAA and NCEI make no warranty, expressed or implied, regarding these data, nor does the fact of distribution constitute such a warranty. NOAA and NCEI cannot assume liability for any damages caused by any errors or omissions in these data. If appropriate, NCEI can only certify that the data it distributes are an authentic copy of the records that were accepted for inclusion in the NCEI archives.
Dataset Citation
  • Cite as: Jenkins, Bethany D.; Bertin, Matthew (2023). Amplicon sequence variants (ASVs) recovered from samples and their related identification as Pseudo-nitzschia taxa and the methods used from 2016-09-26 to 2019-11-25 (NCEI Accession 0278248). [indicate subset used]. NOAA National Centers for Environmental Information. Dataset. https://www.ncei.noaa.gov/archive/accession/0278248. Accessed [date].
Cited Authors
Principal Investigators
Contributors
Resource Providers
Points of Contact
Publishers
Acknowledgments
Theme keywords NODC DATA TYPES THESAURUS NODC OBSERVATION TYPES THESAURUS WMO_CategoryCode
  • oceanography
BCO-DMO Standard Parameters Originator Parameter Names
Data Center keywords NODC COLLECTING INSTITUTION NAMES THESAURUS NODC SUBMITTING INSTITUTION NAMES THESAURUS Global Change Master Directory (GCMD) Data Center Keywords
Platform keywords NODC PLATFORM NAMES THESAURUS BCO-DMO Platform Names Global Change Master Directory (GCMD) Platform Keywords ICES/SeaDataNet Ship Codes
Instrument keywords BCO-DMO Standard Instruments Originator Instrument Names
Place keywords Provider Place Names
Project keywords BCO-DMO Standard Projects Provider Cruise IDs Provider Funding Award Information
Keywords NCEI ACCESSION NUMBER
Use Constraints
  • Cite as: Jenkins, Bethany D.; Bertin, Matthew (2023). Amplicon sequence variants (ASVs) recovered from samples and their related identification as Pseudo-nitzschia taxa and the methods used from 2016-09-26 to 2019-11-25 (NCEI Accession 0278248). [indicate subset used]. NOAA National Centers for Environmental Information. Dataset. https://www.ncei.noaa.gov/archive/accession/0278248. Accessed [date].
Data License
Access Constraints
  • Use liability: NOAA and NCEI cannot provide any warranty as to the accuracy, reliability, or completeness of furnished data. Users assume responsibility to determine the usability of these data. The user is responsible for the results of any application of this data for other than its intended purpose.
Fees
  • In most cases, electronic downloads of the data are free. However, fees may apply for custom orders, data certifications, copies of analog materials, and data distribution on physical media.
Lineage information for: dataset
Processing Steps
  • 2023-05-15T04:35:31Z - NCEI Accession 0278248 v1.1 was published.
Output Datasets
Acquisition Information (collection)
Platform
  • ENDEAVOR
Last Modified: 2024-05-31T15:15:28Z
For questions about the information on this page, please email: ncei.info@noaa.gov