The Ocean Archive System searches our original datasets as they were submitted to us, not individual points or profiles. If you want to search and retrieve ocean profiles in a common format, or objectively analyzed fields, your better option may be to use one of our project applications. See: Access Data

OAS accession Detail for 0291318
<< previous |revision: 1
accessions_id: 0291318 | archive
Title: Experimental results describing the maximum distances at which Stegastes planiforms attacked Pterois volitans and native predators in the Cayman Islands and the Bahamas during 2011 (NCEI Accession 0291318)
Abstract: This dataset contains data collected at Cayman_Islands and Tropical Marine Lab at Lee Stocking Island during deployments Cayman_Reef_Surveys_10-11 and LSI_Reef_Surveys_09-12 in the Caribbean Sea and North Atlantic Ocean on 2011-01-01. These data include depth. These data were collected by Dr Mark Hixon of University of Hawaii as part of the "Mechanisms and Consequences of Fish Biodiversity Loss on Atlantic Coral Reefs Caused by Invasive Pacific Lionfish (BiodiversityLossEffects_lionfish)" project. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) submitted these data to NCEI on 2019-05-22.

The following is the text of the dataset description provided by BCO-DMO:

Max distance of Stegastes planiforms attacks towards native and invasive predators.

Dataset Description:
Maximum distances at which Atlantic territorial three spot damselfish (Stegastes planiforms ) attacked native groupers, grunts, surgeonfish, and Pacific red lionfish (Pterois volitans ) in the Bahamas and Cayman Islands. Habitats of damselfish territories are also described.

Related Manuscript: Kindinger, T.L. (2015)
Date received: 20190522
Start date: 20110101
End date: 20110101
Seanames:
West boundary: -80
East boundary: -76
North boundary: 24
South boundary: 19
Observation types:
Instrument types:
Datatypes:
Submitter:
Submitting institution: Biological and Chemical Oceanography Data Management Office
Collecting institutions:
Contributing projects:
Platforms:
Number of observations:
Supplementary information: Acquisition Description:
Area of study and microhabitat assessment

This study was conducted during July-August 2011, observing the behavioral response of 40 three spot damselfish: 20 in the Bahamas and 20 in the Cayman Islands. In addition to enhancing the generality of the study, it was chosen to observe damselfish in these two locations because of their difference in timing of the lionfish invasion: lionfish were first sighted in the Bahamas in 2004 and in the Cayman Islands in 2008 (Schofield 2009). In the Bahamas, damselfish were studied at three sites in the shallow waters (sites were
The benthic territories maintained year-round by three spot damselfish are less than 1 m2 and are easily identified by the algal gardens covering reef substrata that the damselfish cultivate (Brawley and Adey 1977). The underlying substrata of damselfish territories differed at sites both within and between the Bahamas and Cayman Islands. Since the type of habitat could potentially affect damselfish response by influencing an individual’s ability to defend its territory, the microhabitat of each damselfish territory was characterized by recording the following four habitat categories: (1) low-relief dead coral rubble (mostly Acropora cervicornis), (2) low-relief continuous reef, (3) high-relief large coral bommies, and (4) high-relief continuous reef. Low-relief habitats lacked vertical structure, whereas high-relief habitats consisted of vertical structure over 1 m high, which could potentially interfere with the ability of damselfish to detect intruders.

Experimental treatments and fish capture

Each three spot damselfish was exposed to a series of treatments consisting of a single individual of (1) invasive lionfish, or the following native fishes, all of which are commonly found on reefs near three spot damselfish territories and are chased at varying degrees by damselfish (Thresher 1976; Robertson 1984): (2) herbivorous ocean surgeonfish (Acanthurus bahianus), a potential food competitor; (3) white grunt (Haemulon plumierii), a potential egg predator; and (4) coney grouper (Cephalopholis fulva), a mesopredator ecologically similar to lionfish and at larger sizes is a potential predator of three spot damselfish. At both study regions, 2-3 individuals were captured per fish species, which were rotated daily for experimental use based on each individual’s appearance, apparent condition, and behavior. All fish were caught underwater from non-study sites using hand nets and the fish anesthetic quinaldine when needed. Body size of individual fish, ranging from 10 to 18 cm TL, was restricted to allow for ease of movement in bottles during the experiment. At these sizes, both lionfish and coney grouper were sufficiently large to pose a threat to small recruit fishes inhabiting damselfish territories (Albins 2013). Fish were maintained in flow-through aquarium tanks both prior to and between daily observational trials.

Model-bottle experiment

Using a model-bottle study design (Myrberg and Thresher 1974), individual fish were presented in weighted, clear-plastic gallon bottles to haphazardly located adult damselfish (7–11 cm total length [TL]) in order to measure the relative behavioral responses exhibited by each focal damselfish. Bottle lids were replaced with secured mesh screening to allow for flow of both water and any fish chemical cues. An empty bottle was used as a control treatment. Each treatment was introduced in random order to individual damselfish territories. All fishes inside bottles were either resting or hovering upon introduction.

To measure damselfish aggression per treatment, each bottle was sequentially placed at 100, 50, and 0 cm away from the center of each territory. At each increment, damselfish behavior was observed from a distance of 3 m for 2 min, counting the number of times the focal damselfish made physical contact with the bottle (attack rate) and tallying which aggressive behaviors each damselfish displayed: (1) contact with the mouth while hovering in place directly next to the bottle (nip); (2) contact with the caudal fin while hovering in place directly next to the bottle (butt); (3) starting from a distance, swimming with force directly towards the bottle, making contact with mouth, and then quickly swimming away from the bottle (charge); and, (4) repeatedly charging the bottle multiple times (continuous attack). These categories encompass three spot damselfish behavior known to effectively exclude intruders (Thresher 1976). Avoidance behavior by damselfish was also noted, such as entering refuge sites within their territories (Helfman 1989).

Each bottle was then placed at the closest distance to the territory at which the damselfish had previously made no physical contact with the bottle, then gradually moved the bottle closer to the center of the territory until the damselfish approached the bottle and made physical contact. If the damselfish had previously attacked the bottle at 100 cm away from the territory, the bottle was placed at 150 cm where all damselfish ceased attacking the bottle, and gradually moved the bottle closer to the territory from there. This method provided a measurement of the “maximum distance of attack” (sensu Myrberg and Thresher 1974) per treatment.
Availability date:
Metadata version: 1
Keydate: 2024-04-19 17:24:52+00
Editdate: 2024-04-19 17:25:32+00