The Ocean Archive System searches our original datasets as they were submitted to us, not individual points or profiles. If you want to search and retrieve ocean profiles in a common format, or objectively analyzed fields, your better option may be to use one of our project applications. See: Access Data

OAS accession Detail for 0278569
<< previous |revision: 1
accessions_id: 0278569 | archive
Title: CTD data and analyses of bottles from CTD rosette samples collected on R/V Hugh R. Sharp cruise HRS1415 in August 2014 (NCEI Accession 0278569)
Abstract: This dataset contains chemical and physical data collected on R/V Hugh R. Sharp during cruise HRS1415 in the North Atlantic Ocean from 2014-08-18 to 2014-08-24. These data include Fe, Mn, O2 saturation, O2_sat_pcnt, depth, dissolved Oxygen, dissolved inorganic Carbon, pH, salinity calculated from CTD primary sensors, total alkalinity, and water temperature. The instruments used to collect these data include Automatic titrator, CO2 Analyzer, CTD Sea-Bird, CTD-fluorometer, Dissolved Oxygen Sensor, and Niskin bottle. These data were collected by Bradley M. Tebo of Oregon Health & Science University and George W. Luther of University of Delaware as part of the "The role of soluble Mn(III) in the biogeochemical coupling of the Mn, Fe and sulfur cycles (Soluble ManganeseIII)" project. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) submitted these data to NCEI on 2020-01-14.

The following is the text of the dataset description provided by BCO-DMO:

CTD data and analyses of bottles from CTD rosette samples collected on HRS1415

Dataset Description:
CTD data and analyses of bottles from CTD rosette samples collected on cruise HRS1415.

Field Papers published as a result of this project (methods included):
Madison, A. S, B. M. Tebo, A. Mucci, B. Sundby and G. W. Luther, III. 2013. Abundant Mn(III) in porewaters is a major component of the sedimentary redox system. Science 341, 875-878.

MacDonald, D. J., A. J. Findlay, S. M. McAllister, J. M. Barnett, P. Hredzak-Showalter, S. T. Krepski, S. G. Cone, J. Scott, S. K. Bennett, C. S. Chan, D. Emerson and G.W. Luther III. 2014. Using in situ voltammetry as a tool to search for iron oxidizing bacteria: from fresh water wetlands to hydrothermal vent sites. Environmental Science: Processes & Impacts 16, 2117-2126.

Findlay, A. J., A. Gartman, D. J. MacDonald, T. E. Hanson, T. J. Shaw and G. W. Luther, III. 2014. Distribution and size fractionation of elemental sulfur in aqueous environments: The Chesapeake Bay and Mid-Atlantic Ridge. Geochimica Cosmochimica Acta 142, 334-348.

Oldham, V. O., S. M. Owings, M. Jones, B. M. Tebo and G. W. Luther, III. 2015. Evidence for the presence of strong Mn(III)-binding ligands in the water column of the Chesapeake Bay. Marine Chemistry 171, 58-66.

Luther, G.W. III, A.S. Madison, A. Mucci, B. Sundby and V. E. Oldham. 2015. A kinetic approach to assess the strengths of ligands bound to soluble Mn(III). Marine Chemistry 173, 93-99.

Findlay, A. J., A. J. Bennet, T. E. Hanson and G. W. Luther, III. 2015. Light-dependent sulfide oxidation in the anoxic zone of the Chesapeake Bay can be explained by small populations of phototrophic bacteria. Applied and Environmental Microbiology 81(21), 7560-7569.

Findlay, A. J., A. Gartman, D. J. MacDonald, T. E. Hanson, T. J. Shaw and G. W. Luther, III. 2014. Distribution and size fractionation of elemental sulfur in aqueous environments: The Chesapeake Bay and Mid-Atlantic Ridge. Geochimica Cosmochimica Acta 142, 334-348.

Oldham, V. O., A. Mucci, B. M. Tebo and G.W. Luther III. 2017. Soluble Mn(III)-L complexes are ubiquitous in oxygenated waters and stabilized by humic ligands. Geochimica Cosmochimica Acta 199, 238-246. http://dx.doi.org/10.1016/j.gca.2016.11.043

Olson, L. K. A Quinn, M. G. Siebecker, G.W. Luther III, D. Hastings and J. Morford. 2017. Trace metal diagenesis in sulfidic sediments: Insights from Chesapeake Bay. Chemical Geology 452, 47-59.

Oldham, V. O., M. T. Miller, Laramie T. Jensen and G.W. Luther III. 2017. Revisiting Mn and Fe removal in humic rich estuaries. Geochimica Cosmochimica Acta 209, 267-283.

Cai, W.-J, W.-J. Huang , G. Luther, III, D. Pierrot, M. Li, J. Testa, M. Xue, A. Joesoef, R. Mann, J. Brodeur, Y-Y Xu, B. Chen, N. Hussain, G. G. Waldbusser, J. Cornwell, and W. M. Kemp. 2017. Redox reactions and weak buffer capacity lead to acidification in the Chesapeake Bay. Nature Communications 8, Article number: 369.

Findlay, A. J., D. M. Di Toro and G. W. Luther, III. 2017. A model of phototrophic sulfide oxidation in a stratified estuary. Limnology & Oceanography 62, 1853-1867.

Oldham, V. O., M. R. Jones, B. M. Tebo and G.W. Luther III. 2017. Oxidative and reductive processes contributing to manganese cycling at oxic-anoxic interfaces. Marine Chemistry , in press.
Date received: 20200114
Start date: 20140818
End date: 20140824
Seanames:
West boundary: -76.409
East boundary: -72.728
North boundary: 39.497
South boundary: 38.249
Observation types:
Instrument types:
Datatypes:
Submitter:
Submitting institution: Biological and Chemical Oceanography Data Management Office
Collecting institutions:
Contributing projects:
Platforms:
Number of observations:
Supplementary information: Acquisition Description:
Description/methods for parameters measured:
C parameters performed by Dr. Wei-Jun Cai’s group for:
TA - Open cell Gran titration with semi-automatic AS-ALK2 Apollo Scitech titrator;
pH - glass electrode, NBS buffers;
DIC - infrared CO 2 analyzer (AS-C3, Apollo Scitech).
Use Dickson CRM for calibration. DIC/TA samples were filtered (0.45um) and fixed with 100 ul of saturated mercury bichloride.
Use the methods of Gran (1952) and Huang, et al. (2012).

Fe parameters:
The method of Stookey (1972) is used to determine dissolved Fe(II) and on addition if hydroxylamine Fe total. Fe(III) is determined by difference. Modified and calibrated by many including Lewis et al (2007) and MacDonald et al (2014). Typically, triplicate measurements performed.

Dissolved Mn parameters:
The porphyrin spectrophotometric method of Madison et al (2011) measures dissolved Mn(II), Mn(III) bound to weaker ligands and total Mn. Method includes calibration and intercomparison of totals with other instrumentation (ICP, AA). Detection limit is 0.050 micromolar. Detection limit (DL) is 50 micromolar with a 1 cm path length cell.

Modification of Madison for Mn(III) bound to strong ligands by adding a reducing agent to a separate subsample with the porphyrin to obtain total Mn. Mn(III) bound to strong ligand complexes is determined by difference. Typically, triplicate measurements performed. Detection limit is 3.0 nanomolar.

MnO x on unfiltered samples:
The leucoberbelein blue method is that of Altmann (1972) and Krumblein and Altmann (1973) in 1 cm cells, but can be modified for longer path length cells.

S parameters:
O 2 , H 2 S and polysulfides by the voltammetry method of Luther et al (2008).
A flow cell was also used to collect in situ O 2 and H 2 S data as well as some additional samples. Analysis by voltammetry (Luther et al, 2008).
Solid and nanoparticulate S 8 (Yücel et al 2010 and Findlay et al 2014).
Typically, triplicate measurements performed.

Methods papers used in this project:
Dissolved Mn speciation parameters:
Madison, A., B. M. Tebo, G. W. Luther, III. 2011. Simultaneous determination of soluble manganese(III), manganese(II) and total manganese in natural (pore)waters. Talanta 84, 374-381.

Madison, A. S, B. M. Tebo, A. Mucci, B. Sundby and G. W. Luther, III. 2013. Abundant Mn(III) in porewaters is a major component of the sedimentary redox system. Science 341, 875-878.

Oldham, V. O., S. M. Owings, M. Jones, B. M. Tebo and G. W. Luther, III. 2015. Evidence for the presence of strong Mn(III)-binding ligands in the water column of the Chesapeake Bay. Marine Chemistry 171, 58-66.

Oldham, V. O., A. Mucci, B. M. Tebo and G.W. Luther III. 2017. Soluble Mn(III)-L complexes are ubiquitous in oxygenated waters and stabilized by humic ligands. Geochimica Cosmochimica Acta 199, 238-246. http://dx.doi.org/10.1016/j.gca.2016.11.043
[[ Here, we modified the method of Madison et al. (2011) for water column samples to achieve a detection limit of 3.0 nM (3 times the standard deviation of a blank) by using a 100-cm liquid waveguide capillary cell and the addition of a heating step as well as a strong reducing agent for Mn Speciation [Mn 3+ = Mn T – Mn 2+ ]. See Table 1 in this paper for recovery tests. As weak Mn(III)-L complexes could not be measured in our previous work (Oldham et al, 2015; paper above), this method was used throughout this cruise. ]]

MnO X solids:
Altmann, H.H., 1972. Bestimmung von inWasser gelöstem Sauerstoffmit Leukoberbelinblau I. Fresenius' Z. Anal. Chem. 6, 97–99.

Krumbein, W. E., and H. J. Altmann. 1973. ‘A New Method for the Detection and Enumeration of Manganese Oxidizing and Reducing Microorganisms’. Helgoländer Wissenschaftliche Meeresuntersuchungen 25 (2-3): 347–56. doi: 10.1007/BF01611203 .

Dissolved Fe speciation parameters:
Stookey L.L. 1970. Ferrozine- A New Spectrophotometric Reagent for Iron. Anal. Chem. 42, 779-781.

Lewis, B. L., B. T. Glazer, P. J. Montbriand, G. W. Luther, III, D. B. Nuzzio, T. Deering, S. Ma, and S. Theberge. 2007. Short-term and interannual variability of redox-sensitive chemical parameters in hypoxic/anoxic bottom waters of the Chesapeake Bay. Marine Chemistry 105, 296-308.

O 2 and H 2 S, polysulfides:
Luther, III, G. W., B. T. Glazer, S. Ma, R. E. Trouwborst, T. S. Moore, E. Metzger, C. Kraiya, T. J. Waite, G. Druschel, B. Sundby, M. Taillefert, D. B. Nuzzio, T. M. Shank, B. L. Lewis and P. J. Brendel. 2008. Use of voltammetric solid-state (micro)electrodes for studying biogeochemical processes: laboratory measurements to real time measurements with an in situ electrochemical analyzer (ISEA). Marine Chemistry 108, 221-235.

Luther, G. W., III, and A. S. Madison. 2013. Determination of Dissolved Oxygen, Hydrogen Sulfide, Iron(II), and Manganese(II) in Wetland Pore Waters. In: Methods in Biogeochemistry of Wetlands, R.D. DeLaune, K.R. Reddy, C.J. Richardson, and J.P. Megonigal, editors. SSSA Book Series, no. 10. SSSA, Madison, WI. p. 87-106.

S 8 :
Yücel, M., S. K. Konovalov, T. S. Moore, C. P. Janzen and G. W. Luther, III. 2010. Sulfur speciation in the upper Black Sea sediments. Chemical Geology 269, 364-375.

pH and inorganic carbon parameters:
Gran G. 1952. Determination of the equivalence point in potentiometric titrations, Part II. Analyst , 77: 661-671.

Huang W.-J., Wang Y., and Cai W.-J. 2012. Assessment of sample storage techniques for total alkalinity and dissolved inorganic carbon in seawater. Limnology and Oceanography: Methods , 10: 711-717.
Availability date:
Metadata version: 1
Keydate: 2023-05-21 04:52:54+00
Editdate: 2023-05-21 04:53:32+00