As of May 11, 2011	}		1			!	1		!		!		{			!!	1						!	
Count CDR Varia			Algorithm Name	Collateral Products	Responsible Team Member	Source Data Sensors	Future Source Data Sensor	Spacecraft	Channels	Spatial Res	olution	Temporal Resol	ution	Product Units	t Projection		Metadata Standard	icter I	Key publication reference	Existing User Groups	Expected User Likely Societal Impact Groups	s Outcome	Impact	Community Workshop Status
	edo, (only, i.e ght, Please of menus in the ECV, y the above the G Generatio Datase meeting of	e., not for Level 1b): use the drop down cells below to enter you may also click on e link and use pg 6 in Guideline for the on of Satellite-based ets and Products	a name that ar may be CL recognizable Cli n the Climate ge community, ou e.g. ISCCP, Nr GPCP, or GRHSST, CC PATMOS-x, th	st all in one cell. Collateral Products re those which are not proposed as DRs and are not yet considered to be imate quality, but which are routinely enerated as secondary/intermediate utputs from the CDR algorithm. OAA's CDR Program does not ensure test the availability or reliability of collateral Products. Users can contact the code developers for further formation.	of your team is primarily responsible for development		If you plan to provide CDR continuity from existing sensors to future sensors (e.g., from JPSS or other missions), please identify the mission and sensors to be used. NOTE: if you did not propose to address future sensors or data sets, please state "N/A"	n which source data were used	channels used for each type of source data sensor.	new row for ne each unique ea resolution re (spatial or (s) temporal) te	w row for e.g., ch unique • early solution mornin patial or • mid- mporal) mornin ease include • afterr e units of e resolution .g., mbars,	Record: Month/Year ng ng noon	Month/Year please say "present" if it is ongoing.	Reflectance (unitless), degrees Kelvin, Radiance s W/m^2/sr,	If gridded, what is your projection?	Binary, HDF4, cor HDF5 etc any Cor Clir (CF FGI ISO If n sta	iour Metadata npliant with standards or northoms? e.g., nate Forecast) Convention, DC Standards, ot adhering to a ndard, please te "research"	available publicati al or available. inal ver nly, d	ull bibliographic reference for 1 or 2 (only) key public ions that describe your data set or process, if	(either general communities, e.g., energy, health, climate modeling, c specific group {e.g., GFDL, GMAO, FAO, CDC}). This will help us justify future funding.	groups (not level appropriate for non- or already listed technical policy makers, how previously) society will eventually benefit	outputs. Unlike output measures, outcomes refer to an event or condition that is external to the program and is of direct importance the intended beneficiaries (e.g., scientists, agency managers, policy makers, other stakeholders). Examp of outcome metrics are the number	else. Impact metrics are outcomes that focus on long-term societal, economic, or environmental consequences. Examples of impact metrics include the recovery of stratospheric ozone resulting from implementation of the Montreal Protocol and related policies ar the increase in public understanding of th causes and consequences of ozone loss.	 your community workshop (y/n). If so, please provide date/location and URL if web page exists. If not yet held, please state your plans. BACKGROUND: Per the 2009 Announcement of Opportunity, "the Project expects each Product Development Team to conduct an early community workshop (year 1 of funding) in which it will explain the theoretical basis of its algorithm and its proposed CDR
						1	1			Horizonta V	ertical Orbit	ts Start Date	End Date											
1 MSU ch4 (AMSU ch9 brightness temperatu	19) s	ain Variable			Shu-peng Ben Ho	AMSU brightness tempertures from NOAA 15, 16, 18,and MSU from NOAA 14, and surface radiosonde temperature observations	Aqua AMSU and NPP ATMS	POES	MSU ch4/AMSU ch9	I	00mb all PC orbits		2012	degree Kelvin	+/- 15 degrees for satellite nadir viewing angles	ihdf4 ire	search 90N-90	0S 'Ho, SP. , Y. of the Temper Troposphere Measurements	H. Kuo, and S. Sokolovskiy, Improvement rature and Moisture Retrievals in the Lowe using AIRS and GPS Radio Occultation s, <i>Journal of Atmospheric and Oceani</i> 4, doi: 10.1175/JTECH2071.1, 1726-1739	nt Many users inlcude ECMWF, er NCEP, etc who use on AMSU/MSU and RO data	climate modeling groups, ECMWF, NCEP and reanalysis groups	Satellite climate data records	These datasets will also benefit the general public by providing reliable climate information to policy and decision makers and resource	
2 MSU ch3 (AMSU ch7 brightness temperatu	i7) s ure								MSU ch3/AMSU ch7	200km 2	00mb	1979	2012	degree Kelvin	+/- 15 degrees for satellite nadir viewing angles	hdf4		A Comparison Microwave Me <i>Geophy. F</i>	H. Kuo, Zhen Zeng and Thomas Peterson of Lower Stratosphere Temperature from easurements with CHAMP GPS RO Data Research Letters, 34, L1570	m a, i 1, i				
3 MSU ch2 (AMSU ch5 brightness temperatu	ı5) s ure								MSU ch2/AMSU ch5		00mb	1979	2012	degree Kelvin	+/- 15 degrees for satellite nadir viewing angles	hdf4		Consistent Lower Stratos Radio Occult Measurements	NATGLA30202 2007 Venying He, YH. Kuo, Construction of Temperature Records in the sphere using Global Positioning System tation Data and Microwave Soundir s, A.K. Steiner et al. (Eds.), Springer Berl 2009 in press 1. Goldberg, YH. Kuo, CZ Zou, W	ie m ig in				
																		Schreiner, Ca Stratosphere COSMIC R Results, Terr.	alibration of Temperature in the Lowe from Microwave Measurements usin Radio Occultation Data: Preliminar Atmos. Oceanic Sci., Vol. 20, do 2007.12.06.01/E3C) 2009 5, H. Chen, X. Zhou, D. Hunt, and Y. Kuo	er g ry bi:				
																		Assessment of the upper tro COSMIC radii 36, L17807, do	of radiosonde temperature measurements oposphere and lower stratosphere usin io occultation data, Geophys. Res. Lett oi:10.1029/2009GL038712, 2009.	s, in¦ , 				
							 											Mannucci, A. Sokolovskiy, C Foelsche, S. F Pirscher, M. Estimating th Occultation o	Kirchengast, S. Leroy, J. Wickert, A. K. Steiner, D. Hunt, W. Schreiner, S. C. O. Ao, M. Borsche, A. von Engeln, U. Heise, B. Iijima, YH. Kuo, R. Kursinski, E. Ringer, C. Rocken, and T. Schmidhe Uncertainty of using GPS Radi Data for Climate Monitoring: Interport CHAMP Refractivity Climate Record om Different Data Centers, J. Geophystocococococococococococococococococococ	it, io r- Is				

