As of O	ctober 18, 2010																						
Count Sequential i.d. number to count products, 1,2,3. Please list only of variable per row the spreadsheet.	CDR Variable Name Essential C e.g. Level 1B radiance, albedo, cloud top height, SST, etc For Geophysical Variables (only, i down menus in cells below to enter link and use pg 6 in the Guideline for and Products meeting GCOS Requires	Climate Variable i.e., not for Level 1b): Please use the drop er the ECV, you may also click on the above for the Generation of Satellite-based Datasets wirements pdf document as a reference. IS P/	Algorithm Name	Collateral Products	Responsible Team Membe	er Source Data Sensors ur List the space sensors which provided the raw data from which your product(s) were generated.	Future Source Data Sensor	y Please list all spacecraft from ic which source c u data were used u (e.g., NOAA-8, th EOS Terra, d Sea WiFS, GOES- 14). Please follow the order used in the list of source data sensors.	Channels Spatia Please identify all channels used for each type of source data sensor. Please use resolutior (spatial o temporal) Please ind the units of resolutior mbars, kn degrees).	al Resolution se a Please use As for a new row app for each e.g. unique resolution mo) (spatial or mo of the please at include temporal) mo of the please at include the resolution (e.g., mbars, km, degrees)	Temporal Re Start of Re Month/Yea arly orning fternoon	ecord: End of ecord: End of Record: Month/Year please say "present" if it is ongoing. note any gaps if they exist (e.g., Feb. 2003)	Product Units Reflectance itless), degrees vin, Radiance m^2/sr, etc	Projection fridded, what is your rojection?	Output Format e.g. NetCDF4, Binary, HDF4, HDF5 etc	Metadata Standard Is your Metadata complian with any standards or conventions? e.g., Climate Forecast (CF) Convention, FGDC Standards, ISO 19115 2, etc. If not adhering to a standard, please state "research"	Other Characteristics t e.g., Clear Sky only, latitudina or longitudinal range, over oceans only, over land only, etc	Key publication reference	Existing User Group Please state any existing us (either general communities e.g., energy, health, climate modeling, or specific group {e.g., GFDL, GMAO, FAO, CDC). This will help us justify future funding.	s Expected User Groups ers List the user groups (not alread listed previously) that would likely be interested in the CDR. Who/what is NOAA serving by investing in your work?	y Results that stem from use of the outputs. Unlike output measures, outcomes refer to an event or condition that is external to the program and is of direct importance to the intended beneficiaries (e.g., scientists, agency managers, policy makers, other stakeholders). Examples of outcome metrics are the number of alternative refrigerants introduced to society to reduce the loss of stratospheric ozone and scientific outputs integrated into a new understanding of the causes of the Antarctic ozone hole.	Impact The effect that an outcome has on something else. Impact metrics are outcomes that focus on long-term societal, economic, or environmental consequences. Examples of impact metrics include the recovery of stratospheric ozone resulting from implementation of the Montreal Protocol and related policies and the increase in public understanding of the causes and consequences of ozone loss.	Community Workshop Status Please state whether you have conducted your community workshop (y/n). If so, please provide date/location and URL if web page exists. If not yet held, please state your plans. BACKGROUND: Per the 2009 Announcement of Opportunity, "the Project expects each Product Development Team to conduct an early community workshop (year 1 of funding) in which it will explain the theoretical basis of its algorithm and its proposed CDR development approach. The Team is expected to consider all suggestions and requests for action."
1	Domain Ice/snow surface Oceanic Itemperature Itemperature	Variable Sea ice	APP-x, MODIS IST	none	eff Key, Dorothy Hall	AVHRR, MODIS	VIIRS	NOAA-7 through NOAA-19, Terra and Aqua, and JPSS	Horizon AVHRR 5 km 4,5; MODIS 31,32	ntal Vertical Or N/A All or	rbits Start Da I POES 1982 bits	ate End Date present K		ASE grid (equal area)	netCDF	?	60-90N, S (Arctic and Antarctic)	Key, J., J. Collins, C. Fowler, and R. Stone, 1997. High- latitude surface temperature estimates from thermal satellite data. Remote Sensir Environ., 61, 302-309.	Climate modeling for verification	Climate scientists; climate reanalysis verification	Detection and quantification of trends and variability of surface temperature in the polar regions	May lead to Improvements in model parameterizations and a better understanding of Iclimate	03/2010, Miami. Another workshop will be planned for the second project year.
2	Ice/snow albedo Oceanic	Sea ice A	APP-x (none for MODIS)	none Je	eff Key, Julienne Stroeve	AVHRR, MODIS	VIIRS	NOAA-7 through 1NOAA-19, Terra and 1Aqua, and 1JPSS	AVHRR 5 km 1,2; MODIS 1,2,6	N/A All	l POES 1982 bits	present Ref	flectance hitless) 	ASE grid (equal area)	i InetCDF I I I I I I I I I I I I I I I I	?	60-90N, S (Arctic and Antarctic)	Stroeve, J., J. Box, C. Fowler, Haran, and J.R. Key, 2001. Intercomparison Between in situ and AVHRR Polar Pathfinder-derived Surface Albedo over Greenland. <i>Remote Sensing of the</i> <i>Environment</i> , 75(3), 360-374	T. _I Climate modeling for Iverification I I I I I I I I I I I I I I I I I I I	Climate scientists; Iclimate reanalysis verification	Detection and quantification of trends and variability of surface temperature in the polar regions	May lead to Improvements in model Iparameterizations and a better understanding of Iclimate	03/2010, Miami. Another workshop will be planned for the second project year.
3	Surface radiative fluxes (downwelling and upwelling ishortwave and longwave)	Sea ice	APP-x	Cloud properties: Ja amount, phase, type, height, optical thickness, particle size	eff Key, Xuanji Wang	AVHRR, MODIS	I VIIRS	NOAA-7 through NOAA-19 and JPSS 1	AVHRR 5 km 1,2,3a/b,4 ,5; MODIS 1,2,6,20,3 1,32	All	I POES 1982 bits	present		ASE grid (equal area)	netCDF	research	60-90N, S (Arctic and Antarctic)	Key, J., A.J. Schweiger, and R. Stone, 1997: Expected uncertainty in satellit derived estimates of the hig latitude surface radiation budget. <i>J. Geophys. Res</i> 102(C7), 15837. Key, J., 2002, The Cloud an Surface Parameter Retrieved (CASPR) System for Pol AVHRR Data User's Guid Space Science and Engineerin Center, University Wisconsin, Madison, WI, 60 pp.	S. Climate modeling for ed verification e- h-i on s.,, and ar le.i ng of	Climate scientists; climate reanalysis verification; Energy	Detection and quantification of trends and variability of isurface raditive energy in the polar regions	May lead to improvements in model parameterizations and a better understanding of climate and its change	03/2010, Miami. Another workshop will be planned for the second project year.
4	Sea ice thickness Oceanic	Sea ice		none	Kuanji Wang	AVHRR, MODIS	VIIRS	INOAA-7 through INOAA-19 and JPSS 1	AVHRR1,2, 5 km 3a/b, 4,5; MODIS 1,2,6,20,3 1,32	N/A All	I POES 1982 bits	ipresent im	, , , , , , , , , , , , , , , , , , ,	ASE grid (equal	I InetCDF I I I I I I I I I I I I I I I I I I I	research	II I60-90N, S (Arctic and Antarctic)	Xuanji Wang, Jeffrey Key, and Yinghui Liu (2010), A thermodynamic model for estimating sea and lake ice thickness with optical satelli Idata, J. Geophys. Res., revisio submitted, April 2010.	Climate modeling for verification te	Climate scientists; Iclimate reanalysis verification; cryosphere	Detection and iquantification of trends and variability of sea ice in the polar regions	May lead to improvements in model parameterizations and a better understanding of climate and	03/2010, Miami. Another workshop will be planned for the second project year.
5	Sea ice age (Lagrangian Oceanic Itracking)	Sea ice	agrangian Age	Ice thickness estimated C from age; ice albedo parameterizations based on age relationships	Chuck Fowler, Jim Maslanik	AVHRR, SMMR, SSM/I, AMSR-E, AOBP buoy trajectories	VIIRS,, MIS, AMSR-2/3	INOAA-7 A through 4 NOAA-19 N and JPSS 3	AVHRR 12.5 km 4,5; MODIS 31,32	m N/A IAII	l POES 1979 bits	present K, k	brightness np. (Tb)	ASE grid (equal area)	binary and visualizations	?	IAll ocean (ice-covered) areas	Fowler, C., W. Emery and J. Maslanik, 2003. Satelli derived arctic sea i evolution Oct. 1978 to Mar 2003, <i>Trans. Geosci. an</i> <i>Remote Sensing Letters, Vol</i> 1, No. 2, 71-74. Maslanik, J.A., C. Fowler, Stroeve, S. Drobit, J. Zwally, Yi and W. Emery, 2007. Younger, thinner Arctic i cover: Increased potential f rapid, extensive sea-ice los Geophys. Res. Lett., 3 L24501, doi:10.1029/2007GL032043	A. NCAR, National Ice te Center, NORAD, USGS ce various universities a ch research groups. d IClimate research ol. community J. D.I A ce or iss. 4,I	environmental organizations, shipping operators, resource extraction and management organizations	Findings have led to inew appraisals of vulnerability of the ice pack. contributing to irevised assessment of marine mammal habitat and improved predictions of sea ice risk to shipping and ioperations. Providing impetus for climate model enhancements.	Provies definitive, Ireal-time indication of sea ice recovery or further loss. Long- Iterm record will quantify multi- decadal effects of warming mitigation strategies. Product is easily understandable by public as a climate Ichange indicator.	03/2010, Miami. Another workshop will be planned for the second project year.
	Sea ice concentration Oceanic	Sea ice	I APP-x I I I I I I I I I I I I I I I I I I I	I	/inghui Liu, Walt Meier	I AVHRR, MODIS	I VIIRS, AMSR-2/3, MIS	NOAA-7 Ithrough NOAA-19, Terra and Aqua, NPP, JPSS	AVHRR 5 km 1,2,4,5; MODIS 1,2,31,32	IN/A All	l POES 1982 bits	present per	rcentage (%)	ASE grid (equal area)	netCDF	?	60-90N, S (Arctic and Antarctic)		Climate modeling for verification	Climate scientists; climate reanalysis verification; environmental organizations, biologists general public	Detection and quantification of trends and variability of surface temperature in the polar regions, influence of sea ice changes on climate, biology, and human	May lead to improvements in model parameterizations and a better understanding of climate feedbacks in the polar regions	03/2010, Miami. Another workshop will be planned for the second project year.
	Sea ice concentration Oceanic	Sea ice N B	NASA Team, Bootstrap	none	Nalt Meier	SMMR, SSM/I, SSMIS	IMIS	DMSP, JPSS, 1 GCOM-W	19,22,37 25 km GHz	IN/A Da co is f PC	aily 1978 mposite fromall DES bits	present Con 100	ncentration (0-1	ASE grid (equal area), possibly polar stereographic	l binary	ISO 19115	90N-90S	Cavalieri, D. J., C. I. Parkinson P. Gloersen, J. C. Comiso, and H. J. Zwally. 1999. Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. <i>Journal</i> <i>of Geophysical Research</i> 104(7): 15,803-15,814. Comiso, J.C., and F. Nishio. 2008. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. Journal of iGeophysical Research 113, C02S07, doi:10.1029/2007JC004325	 isea ice researchers, climate modelers, operational ice center iSST groups, biologists educators, journalists igeneral public al 	sea ice researchers, climate modelers, operational ice centers, SST groups, biologists, educators, journalists, general public	Inactivity. IConsistent, Iauthoritative long-term climate record to assess impacts of Arctic sea ice decline and Antarctic sea ice variability on Iclimate, biology, and human activities. Validation of and assimilation into GCM and regional climate Imodels.	May lead to improvements in model parameterizations and a better understanding of climate. Will provide a consistent standard concentration product for a variety of user communities.	03/2010, Miami. Another workshop will be planned for the second project year. A sea ice concentration specific workshop was held 12/2008, San Francisco, as part of earlier sea ice CDR. Another algorithm- focused workshop is planned in late-2010, early 2011
8	Sea ice melt onset and Oceanic	Sea ice C Sea ice	Cross-Correlation	none	Chuck Fowler, Walt Meier, (inghui Liu	AVHRR, MODIS, SMMR SSM/I, SSMIS, AOBP ibuoys	VIIRS, AMSR-2/3, MIS	INOAA-7 through INOAA-19, DMSP, Terra and Aqua, INimbus-7, NPP, JPSS	AVHRR 4; MODIS 31 5-25 kr	m N/A orl	l POES bits 1979	Vel (din present spe	locity rection and eed; cm/s)	EASE grid (equal area)	I I I I I I I I I I I I I I I I I I I	?	All ocean (ice-covered) areas. Feasible over large inland water bodies but not currentl implemented.	Emery, W., C. Fowler, and J. Maslanik. 1995. Satellite remote sensing of ice motion in <i>Oceanographic</i> <i>Applications of Remote</i> <i>Sensing</i> , ed. Motoyoshi Iked and Frederic W. Dobson. CRC Press, Boca Raton. Maslanik, J., C. Fowler, J. Key T. Scambos, T. Hutchinson, and W. Emery. 1998. AVHRR based Polar Pathfinder products for modeling y applications. Annals of Glaciology 25:388-392.	a , sea ice researchers, iclimate and regional- - scale modelers, National Ice Center, ipollution tracking. Required product for Age product generation	environmental organizations, wildlife/biology resaerch and monitoring, shipping operators, resource extraction and ce management on organizations	Ice transport data led to insights into ice response to weather and climate. Assessing pan-arctic transport of contaminants, quantifying performance of ice and climate models, assessing oastal ice hazards and hazards for offshore drilling	Significance for design of ice- strengthened ships, optimal shipping routes, shipping and oil/gas drilling hazards, hazards, marine mammal assessments	03/2010, Miami. Another workshop will be planned for the second project year.
	treeze-up										aily							Markus, T., J. C. Stroeve, and Miller (2009), Recent change in Arctic sea ice melt onset, freezeup, and melt season length, J. Geophys. Res., 114 (C12024, doi:10.1029/2009JC005436) Drobot, S. D., and M. R. Anderson (2001), An improved method for determining snowmelt onset dates over Arctic sea ice usin scanning multichannel microwave radiometer and Special Sense	J. 1 S 1 ,		Detection and	May lead to improvements in model	
	I I ISnow cover	D A 	Drobot and	nonei	ulienne Stroeve, Walt Meier	rISMMR, SSM/I, AMSR-E	i I I I MIS, AMSR-2/3	IDMSP, JPSS, 1 GCOM-W	19, 37 GHz12.5-25	i ico i isf i iPC 5 km iN/A iori	omposite from all DES bits 1979	Day presentnu	y of year,	EASE grid (equal ar <u>ea)</u>	I I I I I I I I I I I I I I I I I I I	 ?	I I I All ocean (ice-covered) areas	Microwave Imager data, J. Geophys. Res., 106, 24,033 - 124,049, doi:10.1029/ 2000JD000171. Hall, D.K. and G A Biggs	Climate modeling for	Climate scientists; climate reanalysis verification	quantification of trends land variability of surface temperature in the polar regions	parameterizations and a better understanding of climate May lead to	03/2010, Miami. Another workshop will be planned for the second project year.
11	Greenland surface temperature	Since Surface Temperature	inowmap	none	Dorothy Hall	MODIS	VIIRS	Terra and N Aqua, NPP, 1 JPSS 8	MODIS 1,2,4,6,31 500 m t & 32 0.05 de	to	l orbits 2000	ipresent Un	itless	inusoidal	I HDF-EOS I I I I I I I I I I I I I I I I I I I	Yes - EOS Project	190N-90S - land only	12007: "Accuracy assessment of the MODIS snow-cover products," Hydrological Processes, 21(12):1534-154 DOI: 10.1002/hyp.6715. Hall, D.K., J.E. Box, K.A. Casey S.J. Hook, C.A. Shuman and k Steffen, 2008: "Comparison satellite-derived ice and snow surface temperatures over Greenland from MODIS, ASTER, ETM+ and in-situ	7, IClimate modeling for verification , , , , , , , , ,	Climate scientists; Iclimate reanalysis verification	Detection and quantification of trends and variability of surface temperature in the polar regions Detection and quantification of trends and variability of surface temperature in the polar regions	improvements in model parameterizations and a better understanding of climate May lead to improvements in model parameterizations and a better understanding of climate	03/2010, Miami. Another workshop will be planned for the second project year. 03/2010, Miami. Another workshop will be planned for the second project year.
			т 1 1 1 5Т 1	none	Dorothy Hall, Joey Comiso, Je Key, et al.	eff ^I MODIS	MODIS	Terra and Aqua, NPP, JPSS 8	MODIS 31 & 32 5 km	N/A All	l orbits 200	present K	 	inusoidal	i I I I HDF-EOS	Yes - EOS Project	i I I Greenland only	observations," Remote Sensing of Environment, 112(10):3739-3749, doi:10.1016/j.rse.2008.05.00	I I I O ^I Climate modeling for Iverification	Climate scientists; climate reanalysis verification		1 1 1 1 1	