As of October 18, 2010																			
Count CDR Variable Name	Essential Climate Variable	Algorithm Name Collateral Products	Responsible Team Member	Source Data Sensors	Future Source Data Sensor	Spacecraft	Channels	Spatial Resolutio	n Temporal Res	solution P	roduct Units Projection	o Output Format	Metadata Standar	d Other Characteristics	Key publication reference Existing Us	er Groups Expected User Groups	Outcome	Impact	Community Workshop Status
Sequential i.d. number to count products, 1,2,3 Please list only one variable per row of the spreadsheet.	For Geophysical Variables (only, i.e., not for Level 1b): Please use the drop down menus in cells below to enter the ECV, you may also click on the above link and use pg 6 in the <i>Guideline for the Generation of Satellite-based Datasets and Products</i> <i>meeting GCOS Requirements</i> pdf document as a reference.		Please identify which member of your team is primarily responsible for development of this particular product.	provided the raw data from	If you plan to provide CDR continuity from existing sensors to future sensors (e.g., from JPSS or other missions), please identify the mission and sensors to be used. NOTE: if you did not propose to address future sensors or data sets, please state "N/A"	 spacecraft from which source data were used 	all channels used for each	new row for new row each unique each uni resolution resolution (spatial or (spatial o	que • early morning or • mid- I) morning • afternoon he the	Record: (un Month/Year Kel	Reflectance If gridded, what is yo tless), degrees projection? in, Radiance n^2/sr, etc	e.g. NetCDF4, Binary, HDF4, HDF5 etc	Is your Metadata complian with any standards or conventions? e.g., Climate Forecast (CF) Convention, FGDC Standards, ISO 1911! etc. If not adhering to a standard, please state "research"	longitudinal range, over oceans		n, climate be interested in the CDR. fic group {e.g., Who/what is NOAA serving by D, CDC}). investing in your work?	Results that stem from use of the outputs. Unlike output measures, outcomes refer to ar event or condition that is external to the program and is of direct importance to the intended beneficiaries (e.g., scientists, agency managers, policy makers, other stakeholders). Examples of outcome metrics are the number of alternative refrigerants introduced to society to reduce the loss of stratospheric ozone and scientific outputs integrated int a new understanding of the causes of the Antarctic ozone hole.	are outcomes that focus on of long-term societal,	 your community workshop (y/n). If so, please provide date/location and URL if web page exists. If not yet held, please state your plans. BACKGROUND: Per th 2009 Announcement of Opportunity, "the Project expects each Product Development Team to conduct an early community workshop (year 1 of funding) in which it will explain the theoretical basis of its algorithm and its proposed CDR development approach. The Team is expected to consider all suggestions and requests for action."
	Domaine Marialla							Horizontal Vortic	al Orbite Start Dat	to End Data									
1 Total Column Ozone	Domain Variable Atmospheric Ozone	TOZ Effective cloud reflectivity, Aerosol Index	Lawrence Flynn	SBUV(/2) (TOMS, OMI GOME-2)	I, OMPS-NM	NOAA-9, - 11, -14, -16, -17, -18, - 19, NIMBUS 7 (EP, EOS-	306 nm, 313 nm, 318 nm, 331 nm 340 nm (no 306	200X200 N/A KM^2 (50X50 KM^2, 12X24 KM^2, 40X80	Daytime 11/1978 of POES (1970 for orbits Nimbus- BUV)	r Ur	one, Dobson 1 deg X 1 deg its (milli-atmLat/Lon when) gridded	Fortran Binary	Research	Sunlit Earth	P.K. Bhartia, et al., A Quarter WMO (Scien Century of Ozone Assessments Observations by SBUV and Depletion), I TOMS, Ozone, Proc. Quad. NOAA NCEP Ozone Symp., 2004, Ed. C. Modeling, G Zerefos. Miller, A. J., et al. (2002), A cohesive total ozone data set from the SBUV(/2) satellite system, J. Geophys. Res., 107(D23), 4701, doi:10.1029/2001JD000853.	tific of Ozone IASA, Climate	Increased awareness of UV exposure, replacement chamical for CFCs, Science of ozone layer destruction	of Recovery of stratospheric ozone resulting from	Review at NASA GSFC Ozone MEASURES Program Meeting (6/23/2010); Review at O3OAT in Silver Spring
2 Ozone Vertical Profile	Atmospheric Ozone	SBUV(/2) Profile Mg II Index, SO2 Index Ozone	Lawrence Flynn	SBUV(/2) (OMI, GOMI 2)	E-OMPS-NM and OMPS-NP	11, -14, -16, -17, -18, - 19, NIMBUS 7 (EOS- Aura,	274 nm, 283 nm, 288 nm,	KM^2 Repor (24X24 g, 7-20 KM^2, KM 40X80 resulc	tin of POES (1970 for		its (milli-atm	Fortran Binary	Research	Sunlit Earth, 80S-80N	Flynn, L.E., et al. (2009) Measurements and products from the Solar Backscatter Ultraviolet (SBUV/2) and Ozone Mapping and Profiler Suite (OMPS) Instruments. International J. of Remote Sensing, 30 (15). Kondragunta S., et al., Analysis and Validation of Version 8 SBUV/2 Total and Profile Ozone Data, Proc. Quad. Ozone Symp., 2004, Ed. C. Zerefos.		UV exposure, replacement chamical	stratospheric ozone resulting from	e ^I MEASURES Program Meeting I(6/23/2010); Review at O3OAT in Silver Spring
3 Limb Ozone Profile	Atmospheric Ozone	Profile (Perhaps the	of NASA LaRC is leading the EDR algorithm development	SCIAMACHY)	OMPS-LP, OMPS-NM, OMPS	S-INPP, JPSS-2	290-1000 nm		Daytime 2011 tin of Polar A ti	Ur	one, Dobson its (milli-atm), ozone mv	HDF-5 and NetCDF-4	Research	Sunlit Earth		WMO (Scientific Assessments of Ozone Depletion), NASA, NOA NCEP, Climate Modeling, GMAO		Recovery of stratospheric ozone resulting from implementation of Montreal Protocol	