As of Oct	As of October 18, 2010																										
Count	Climate Record Variable Name		imate Variable	Algorithm Name	Collateral Products	Responsible Team Member	Source Data Sensors	Future Source Data Sensor	Spacecraft Ch	hannels Spatial Res	solution	Temporal Re	solution	Product Units	Projection	Output Format	Metadata Standard	Other Characteristics	Key publication reference	Existing User Groups	Expected User Groups	Outcome	Impact	Website URL (if available			
Sequential i.d. number to count products, 1,2,3 Please list only one variable per row of the spreadsheet.	e.g. Level 1B radiance, albedo,	menus in cells below to enter the ECV, y pg 6 in the <i>Guideline for the Generation</i>	ot for Level 1b): Please use the drop down rou may also click on the above link and us in of Satellite-based Datasets and Products as pdf document as a reference.	the name that may be recognizable in the	Products are those which are not t	team is primarily responsible for	List the sensors which provided the raw data from which your product(s) were generated. For in-situ products, please list both the sensor type (eg., albedometer, sun photometer) and the network(s) as relevant (e.g., AERONET, MOBY, etc.)	future sensors (e.g., from JPSS or other missions), please identify the mission and sensors to be used. NOTE: if you	spacecraft from which source use data were used (e.g., NOAA-8, EOS Terra, as r	new row for each unique resolution (spatial or temporal) Please include the units of the resolution (e.g., mbars, km, degrees).	new row for e. each unique resolution (spatial or temporal) mplease	e.g., Month/Yea • early morning • mid- morning	ar Record:	(unitless), degrees Kelvin, Radiance W/m^2/sr, etc	gridded, what is your rojection?	e.g. NetCDF4, Binary, HDF4, HDF5 etc	with any standards or	longitudinal range, over oceans		(either general communities, e.g., energy, health, climate	listed previously) that would likely be interested in the CDR. Who/what is NOAA serving by	the outputs. Unlike output measures, outcomes refer to a event or condition that is external to the program and is direct importance to the intended beneficiaries (e.g., scientists, agency managers, policy makers, other stakeholders). Examples of outcome metrics are the number of alternative refrigerants introduced to society to reduce the loss of stratospheric ozone and scientific outputs integrated in	has on something else. Impact metrics are outcomes that focus on s of long-term societal, economic, or environmental consequences. Examples of impact metrics include the recovery of stratospheric ozone resulting from implementation of the Montreal Protocol and related policies and the increase in public understanding of the causes and consequences of ozone	If you have a website that describes the algorith and/or products, please proving the URL.			
 		Domain	Variable					1			Vertical O	Orbits Start Da	ite End Date					i i		i i							
1	Channel 1 reflectance	N/A	N/A	PATMOS-X	cloud type; cloud top	Andrew Heidinger	AVHRR	VIIRS	1 NOAA-5; NOAA-7; NOAA-9; NOAA-11; NOAA-12; NOAA-14; NOAA-15; su	1 NOAA-5; NOAA-7; NOAA-9; NOAA-11; NOAA-12; NOAA-12; NOAA-14; NOAA-15; NOAA-15;	1 NOAA-5; NOAA-7; NOAA-9; NOAA-11; NOAA-12; NOAA-12; NOAA-14; NOAA-15: 1 Akm sensor resolution / 10km / 10km	1 NOAA-5;	1 NOAA-5;	N/A	orbits !	78 present	Reflectance (unitless)	Platte Caree (equal angle)	hdf4	CF	90N-90S					ht	:p://cimss.ssec.wisc.edu/patı
2	Channel 2 reflectance	N/A	N/A	PATMOS-X	temperature; cloud emmisivity; cloud beta; cloud optical depth; cloud effective radius; cloud albedo: cloud	Andrew Heidinger	AVHRR	VIIRS				4km sensor 2 resolution / 10km	sensor lution N/A 0km	All POES 11/197	78 present	Reflectance Plat (unitless) (equ	Platte Caree (equal angle)	hdf4	CF	90N-90S	Heidinger, Andrew K. and Pavolonis, Michael J Global daytime distribution of overlapping cirrus cloud from NOAA's Advanced Very High Resolution Radiometer.	of EUMETSAT CM-SAF, ud ISCCP, GEWEX, SMHI, Very KNMI climate	Geophysical product developers, GCM	Satellite climate record community enabled to	ord to		
3	Channel 3a reflectance	N/A	N/A	PATMOS-X	transmission; cloud mask/fraction; channel 1 aot; outgoing longwave radiation; surface temperature	Andrew Heidinger	AVHRR	VIIRS		NOAA-17; degree grid NOAA-18; NOAA-19; MetOp-2	N/A	All POES 11/197	78 present	Reflectance (unitless)	Platte Caree (equal angle)	hdf4	CF	90N-90S	Journal of Climate, Volume 18, Issue 22, 2005, pp.4772- 4784.	modeling groups	outcomes and impac						

		1
	 	 1
)
		1
sx/		
1		ľ
		 l