# Neuwirth - Hessen/Kellerwald dhk10 - QUPE - ITRDB GERM156 #---------------------------------------------------- # World Data Service for Paleoclimatology, Boulder # and # NOAA Paleoclimatology Program # National Centers for Environmental Information (NCEI) #---------------------------------------------------- # Template Version 4.0 # Encoding: UTF-8 # NOTE: Please cite original publication, NOAA Landing Page URL, dataset and publication DOIs (where available), and date accessed when using downloaded data. If there is no publication information, please cite investigator, study title, NOAA Landing Page URL, and date accessed. # # Description/Documentation lines begin with # # Data lines have no # # # NOAA_Landing_Page: https://www.ncei.noaa.gov/access/paleo-search/study/16666 # Landing_Page_Description: NOAA Landing Page of this file's parent study, which includes all study metadata. # # Study_Level_JSON_Metadata: https://www.ncei.noaa.gov/pub/data/metadata/published/paleo/json/noaa-tree-16666.json # Study_Level_JSON_Description: JSON metadata of this data file's parent study, which includes all study metadata. # # Data_Type: Tree Ring # # Dataset_DOI: # # Science_Keywords: #-------------------- # Resource_Links # # Data_Download_Resource: https://www.ncei.noaa.gov/pub/data/paleo/treering/measurements/europe/germ156-rwl-noaa.txt # Data_Download_Description: Raw Measurements - NOAA Template File; germ156-rwl-noaa.txt # # Related_Online_Resource: https://www.ncei.noaa.gov/pub/data/paleo/treering/measurements/europe/germ156.rwl # Related_Online_Description: RWL File; Raw Measurements - Tucson Decadal File # # Supplemental_Download_Resource: https://www.ncei.noaa.gov/pub/data/paleo/treering/measurements/correlation-stats/germ156.txt # Supplemental_Description: Text File; Correlation Stats # #-------------------- # Contribution_Date # Date: 2014-02-27 #-------------------- # File_Last_Modified_Date # Date: 2014-02-27 #-------------------- # Title # Study_Name: Neuwirth - Hessen/Kellerwald dhk10 - QUPE - ITRDB GERM156 #-------------------- # Investigators # Investigators: Neuwirth, B.(https://orcid.org/0000-0001-7473-462X) #-------------------- # Description_Notes_and_Keywords # Description: Purpose of Collection: # # climate/growth relationship NOAA Template Raw Measurements file added 2019-02-05. #-------------------- # Publication # Authors: Dagmar A. Friedrichs, Ulf Büntgen, David C. Frank, Jan Esper, Burkhard Neuwirth and Jörg Löffler # Journal_Name: Tree Physiology # Published_Title: Complex climate controls on 20th century oak growth in Central-West Germany # Published_Date_or_Year: 2009 # Volume: 29 # Pages: 39-51 # Issue: 1 # Report_Number: # DOI: 10.1093/treephys/tpn003 # Full_Citation: None # Abstract: We analyze interannual to multi-decadal growth variations of 555 oak trees from Central-West Germany. A network of 13 pedunculate oak (Quercus robur L.) and 33 sessile oak (Quercus petraea (Matt.) Liebl.) site chronologies is compared with gridded temperature, precipitation, cloud-cover, vapor pressure and drought (i.e., Palmer Drought Severity Index, PDSI) fluctuations. A hierarchic cluster analysis identifies three groups for each oak species differentiated by ecologic settings. When high precipitation is primarily a characteristic for one Q. robur and one Q. petraea cluster, the other clusters are more differentiated by prevailing temperature conditions. Correlation analysis with precipitation and vapor pressure reveals statistically significant (P <= 0.05) correlations for June (r = 0.51) and annual (r = 0.43) means. Growth of both species at dry sites correlates strongly with PDSI (r = 0.39, P <= 0.05), and weakly with temperature and cloud-cover. In natural stands, Q. robur responds more strongly to water depletion than Q. petraea. Twenty-one-year moving correlations show positive significant growth response to both PDSI and precipitation throughout the 20th century, except for the 1940s - an anomalously warm decade during which all oak sites are characterized by an increased growth and an enhanced association with vapor pressure and temperature. We suggest that the wider oak rings that are exhibited during this period may be indicative of a nonlinear or threshold-induced growth response to drought and vapor pressure, and run counter to the general response of oak to drought and precipitation that normally would result in suppressed growth in a warmer and drier environment. As the wide rings are formed during the severe drought period of the 20th century, a complex model seems to be required to fully explain the widespread oak growth. Our results indicate uncertainty in estimates of future growth trends of Central European oak forests in a warming and drying world. #-------------------- # Authors: Dagmar A. Friedrichs, Valerie Trouet, Ulf Büntgen, David C. Frank, Jan Esper, Burkhard Neuwirth, Jörg Löffler # Journal_Name: Trees - Structure and Function # Published_Title: Species-specific climate sensitivity of tree growth in Central-West Germany # Published_Date_or_Year: 2009 # Volume: 23 # Pages: 729-739 # Issue: 4 # Report_Number: # DOI: 10.1007/s00468-009-0315-2 # Full_Citation: None # Abstract: Growth responses to twentieth century climate variability of the three main European tree species Fagus sylvatica, Quercus petraea, and Pinus sylvestris within two temperate low mountain forest sites were analyzed, with particular emphasis on their dependence upon ecological factors and temporal stability in the obtained relationships. While site conditions in Central (~51°N, 9°E, KEL) and West (50.5°N, 6.5°E, EIF) Germany are similar, annual precipitation totals of ~700 mm and ~1,000 mm describe a maritime-continental gradient. Ring-width samples from 228 trees were collected and PCA used to identify common growth patterns. Chronologies were developed and redundancy analysis and simple correlation coefficients calculated to detect twentieth century temperature, precipitation, and drought fingerprints in the tree-ring data. Summer drought is the dominant driver of forest productivity, but regional and species-specific differences indicate more complex influences upon tree growth. F. sylvatica reveals the highest climate sensitivity, whereas Q. petraea is most drought tolerant. Drier growth conditions in KEL result in climate sensitivity of all species, and Q. petraea shifted from non-significant to significant drought sensitivity during recent decades at EIF. Drought sensitivity dynamics of all species vary over time. An increase of drought sensitivity in tree growth was found in the wetter forest area EIF, whereas a decrease occurred in the middle of the last century for all species in the drier KEL region. Species-specific and regional differences in long-term climate sensitivities, as evidenced by temporal variability in drought sensitivity, are potential indicators for a changing climate that effects Central-West German forest growth, but meanwhile hampers a general assessment of these effects. #-------------------- # Authors: Johannes Andreas Schultz and Burkhard Neuwirth # Journal_Name: Agricultural and Forest Meteorology # Published_Title: A new atmospheric circulation tree-ring index (ACTI) derived from climate proxies: Procedure, results and applications # Published_Date_or_Year: 2012 # Volume: 164 # Pages: 149-160 # Issue: # Report_Number: # DOI: 10.1016/j.agrformet.2012.05.007 # Full_Citation: None # Abstract: This paper introduces a new procedure to investigate the influence of weather types on spatio-temporal tree-ring growth patterns. Within the framework of the procedure a new proxy-based climate index termed as the atmospheric circulation tree-ring index (ACTI) is calculated that combines weather-type classification data with climate proxies. The new approach is tested using a Central European multi-species tree-ring width network consisting of 115 sites. The procedure used to calculate the ACTI time series includes: 1. Monte Carlo simulations, 2. multiple testing correction, and 3. selection and grouping algorithms. The tree-ring width series are grouped according to their weather-type responses, and the ACTI time series were computed for each group. # # The new procedure explains the climate signal preserved in tree-ring chronologies more comprehensively because the complex interaction between the different climate elements is taken into account by using weather-type classification data. Strong correlations between the ACTI and tree-ring width series (r = 0.69) and between the ACTI time series and climate gridded datasets (r > 0.6) were observed. Further a correlation between ACTI and northern hemisphere mean temperatures (r = 0.5) were found. These results indicate that the ACTI enables the investigation of weather-type growth relationships. #-------------------- # Authors: Stefanie Fischer and Burkhard Neuwirth # Journal_Name: ISRN Forestry # Published_Title: Vulnerability of Trees to Climate Events in Temperate Forests of West Germany # Published_Date_or_Year: 2013 # Volume: 2013 # Pages: # Issue: 201360 # Report_Number: # DOI: 10.1155/2013/201360 # Full_Citation: None # Abstract: An improved understanding of the spatiotemporal climate/growth relationship of our forests is of particular importance for assessing the consequences of climate warming. A total of 67 stands of beech (Fagus sylvatica L.), pedunculate oak (Quercus robur L.), sessile oak (Quercus petraea (Matt.) Liebl.), Scots pine (Pinus sylvestris L.), and spruce (Picea abies Karst.) from sites located in the transition zone from the lowlands to the low mountain ranges of West Germany have been analysed. A combination of pointer year and cluster analysis was used to find groups with similar growth anomaly patterns over the 1941-2000 period. Shifted reaction patterns especially characterise differences in the growth behaviour of the clusters. These are controlled by different reactions to the climate conditions in winter and spring and are determined by a complex system of forcing factors. Results of this study reflect the enormous importance of the length of the growing season. Increasing the duration of the vegetation period climate warming can change the climate/growth relationship of trees, thereby confounding climate reconstructions which use tree rings. Since forcing factors have been detected that are more important than the tree species, we recommend the application of growth-specific approaches for the analysis of tree species' vulnerability to climate. #-------------------- # Funding_Agency # Funding_Agency_Name: # Grant: #-------------------- # Site_Information # Site_Name: Hessen/Kellerwald dhk10 # Location: Germany # Northernmost_Latitude: 51.15 # Southernmost_Latitude: 51.15 # Easternmost_Longitude: 9.0833 # Westernmost_Longitude: 9.0833 # Elevation_m: 360 #-------------------- # Data_Collection # Collection_Name: GERM156 # First_Year: 1846 # Last_Year: 2005 # Time_Unit: CE # Core_Length_m: # Parameter_Keywords: ring width # Notes: #-------------------- # Species # Species_Name: Quercus petraea (Matt.) Liebl. = Quercus sessiliflora Salisb. # Common_Name: durmast oak # Tree_Species_Code: QUPE #-------------------- # Variables # # PaST_Thesaurus_Download_Resource: https://www.ncei.noaa.gov/access/paleo-search/skos/past-thesaurus.rdf # PaST_Thesaurus_Download_Description: Paleoenvironmental Standard Terms (PaST) Thesaurus terms, definitions, and relationships in SKOS format. # # Data variables follow that are preceded by '##' in columns one and two. # Variables format: shortname-tab-var components: what, material, error, units, seasonality, data type, detail, method, C or N for Character or Numeric data) # ## age_CE age,,,year Common Era,,tree ring,,,N, ## dhk1007m_raw total ring width,,,millimeter,,tree ring,,,N,Tree ID: dhk1007m; units are 0.01 mm if end-of-series marker is 999 and 0.001 mm if end-of-series marker is -9999 ## dhk1006m_raw total ring width,,,millimeter,,tree ring,,,N,Tree ID: dhk1006m; units are 0.01 mm if end-of-series marker is 999 and 0.001 mm if end-of-series marker is -9999 ## dhk1005m_raw total ring width,,,millimeter,,tree ring,,,N,Tree ID: dhk1005m; units are 0.01 mm if end-of-series marker is 999 and 0.001 mm if end-of-series marker is -9999 ## dhk1004m_raw total ring width,,,millimeter,,tree ring,,,N,Tree ID: dhk1004m; units are 0.01 mm if end-of-series marker is 999 and 0.001 mm if end-of-series marker is -9999 ## dhk1003m_raw total ring width,,,millimeter,,tree ring,,,N,Tree ID: dhk1003m; units are 0.01 mm if end-of-series marker is 999 and 0.001 mm if end-of-series marker is -9999 ## dhk1002m_raw total ring width,,,millimeter,,tree ring,,,N,Tree ID: dhk1002m; units are 0.01 mm if end-of-series marker is 999 and 0.001 mm if end-of-series marker is -9999 ## dhk1001m_raw total ring width,,,millimeter,,tree ring,,,N,Tree ID: dhk1001m; units are 0.01 mm if end-of-series marker is 999 and 0.001 mm if end-of-series marker is -9999 #--------------------- # Data: # Missing_Values: NA age_CE dhk1007m_raw dhk1006m_raw dhk1005m_raw dhk1004m_raw dhk1003m_raw dhk1002m_raw dhk1001m_raw 1846 NA NA 1.7 NA NA NA NA 1847 NA NA 2.28 NA NA NA NA 1848 NA NA 2.07 NA NA NA NA 1849 NA NA 1.53 NA NA NA NA 1850 NA NA 2.5 NA NA NA NA 1851 NA NA 1.06 NA NA NA NA 1852 NA NA 1.8 NA NA 3.43 NA 1853 NA NA 2.38 NA NA 2.9 NA 1854 NA NA 2.64 NA NA 3.97 NA 1855 NA NA 2.24 0.45 NA 4.56 NA 1856 NA NA 1.97 0.65 NA 2.91 1.4 1857 NA NA 1.53 0.86 NA 3.18 1.41 1858 NA NA 0.97 0.63 NA 3.42 2.04 1859 NA NA 1.19 1.23 NA 2.62 1.68 1860 NA NA 1.72 1.02 NA 5.02 2.41 1861 NA NA 1.78 1.32 NA 4.45 2.51 1862 NA NA 1.33 1.16 1.61 3.78 2.4 1863 NA 1.49 1.48 0.94 1.24 1.5 2.08 1864 NA 1.18 1.29 0.78 1.33 2.08 1.9 1865 NA 0.34 0.62 0.26 0.55 0.94 0.8 1866 NA 0.59 1.04 0.68 0.71 1.2 1.52 1867 1.74 0.91 1.06 0.8 0.6 2 1.43 1868 1.48 0.69 0.86 0.65 0.49 1.44 1.22 1869 1.12 0.72 1.02 0.6 0.56 1.32 1.16 1870 1.35 0.68 1.15 0.44 0.59 1 1.12 1871 2.56 1.25 1.43 1.19 0.78 1.26 1.8 1872 1.44 0.74 1.12 0.82 0.52 1.2 1.29 1873 1.11 0.65 1.27 0.63 0.76 1.01 1.42 1874 0.84 0.42 0.94 0.31 0.6 0.84 1.02 1875 1.65 0.84 1.25 0.86 1.08 1.5 1.7 1876 2.4 2.38 1.99 1.92 1.79 0.76 1.14 1877 3.89 4.25 3.08 2.79 2 0.87 1.16 1878 4.77 3.72 3.14 3.1 2.61 1.35 1.32 1879 4.22 2.74 3.64 2.92 2.16 1.39 1.1 1880 2.65 2.02 2.9 1.93 1.7 1.16 0.79 1881 1.31 1.05 1.8 1.22 1.12 0.9 0.8 1882 1.92 1.76 2.96 2.42 1.64 1.41 1.06 1883 1.3 1.13 2.02 0.92 1.12 0.94 0.76 1884 2.66 1.7 4.12 2.7 1.67 1.35 1.05 1885 1.62 1.32 2.32 1.84 1.44 1.21 0.92 1886 1.89 1.18 2.88 2.48 1.32 1.29 1.02 1887 1.26 1.09 2.08 2.08 1.24 1.06 0.87 1888 1.68 1.04 2.32 2.26 1.04 1.18 0.94 1889 1.24 1.06 1.86 1.67 1.07 1.08 1.1 1890 1.32 1.27 2.24 2.22 1.09 1.17 1.18 1891 2.06 1.77 2.73 2.54 1.62 1.62 1.54 1892 1.4 1.26 1.82 1.82 1.08 1.1 1.09 1893 0.92 0.74 1.24 1.02 0.84 0.77 0.86 1894 2.19 1.08 1.92 1.68 1.16 0.96 1.14 1895 1.56 1.07 1.36 1.54 1.08 0.88 1.34 1896 2.3 1.47 1.88 1.78 1.6 1.2 1.93 1897 2.11 1.59 1.94 1.78 1.34 1.38 1.76 1898 1.76 1.51 1.81 1.5 1.28 1.45 1.78 1899 1.88 1.06 1.89 1.38 1.18 1.37 1.66 1900 1.88 1.62 1.82 1.31 1.44 1.38 1.81 1901 1.42 1.22 1.58 1.18 1.07 0.85 1.25 1902 1.12 1.1 1.34 0.99 0.95 0.85 1.19 1903 1.63 1.21 1.56 1.18 1.08 1.09 1.28 1904 1.46 1.28 1.46 1.13 1.12 1.1 1.38 1905 1.43 1.19 1.54 1 1.2 1.05 1.43 1906 1.3 1.1 1.42 1.04 1.04 1.12 1.25 1907 1.38 1.46 1.74 1.22 1.36 1.27 1.63 1908 1.08 1.22 1.45 1.01 1.08 1.06 1.24 1909 0.57 0.82 0.97 0.68 0.74 0.83 0.75 1910 1.06 1.06 1.52 0.86 0.96 0.95 1.07 1911 0.98 1 1.13 0.94 1.04 1.08 1.11 1912 1.16 1.56 1.64 0.94 1.16 1.1 1.9 1913 1.61 1.74 1.78 1.32 1.31 1.44 2.54 1914 1.88 2.08 2.1 1.9 1.69 1.88 2.94 1915 1.1 1.29 0.96 0.96 0.9 1 1.23 1916 2.1 1.76 1.2 1.38 1.07 1.44 2.07 1917 1.49 1.38 1.22 1.06 1.08 1.22 1.32 1918 1.26 1.38 1.28 1.1 0.91 0.97 1.33 1919 1.34 1.36 1.4 1.06 1.12 1.1 1.47 1920 1.3 1.07 1.35 0.92 0.88 1.12 1.39 1921 1.34 0.84 1.16 0.97 0.95 0.94 1.39 1922 1.28 1.14 1.42 1 0.96 1.2 1.64 1923 1.45 1.21 1.41 1.2 0.86 1.32 1.57 1924 1.74 1.43 1.64 1.65 1.35 1.37 1.9 1925 1.4 1.27 1.08 1.32 0.92 1.14 1.37 1926 1.4 1 1.09 1.13 1 1.16 1.1 1927 1.88 1.62 1.58 1.56 1.23 1.66 1.69 1928 1.4 1.39 1.36 1.36 1.06 1.32 1.4 1929 1.21 0.91 1.22 1.25 0.88 1.06 1.44 1930 1.54 0.92 1.36 1.27 0.93 1.18 1.78 1931 1.88 1.28 1.8 1.54 1.06 1.58 2.15 1932 1.6 1.3 1.52 1.53 1 1.32 1.74 1933 1.71 0.84 1.22 1.8 0.97 1.5 2.02 1934 0.84 0.8 0.97 0.89 0.79 1.01 1.16 1935 1.1 0.8 1.4 1.31 1.04 1.23 1.42 1936 1.53 1.1 1.92 1.57 1.12 1.18 2.14 1937 1.38 1.15 1.8 1.54 1.18 1.18 1.74 1938 1.28 1.1 1.73 1.5 1.16 1.28 1.84 1939 1.22 1.12 1.9 1.49 1.26 1.14 1.98 1940 1.13 0.82 1.4 1.22 1.11 0.94 1.24 1941 1.36 0.64 1.2 1.06 0.94 0.84 0.98 1942 1.12 0.77 1.36 0.9 1.08 1.07 0.98 1943 0.99 0.88 1.48 1.18 1.22 1.1 1.52 1944 2.02 1.06 2.16 1.96 1.26 1.48 2.07 1945 1.33 0.7 1.37 1.2 0.84 0.87 1.28 1946 2.1 0.89 2.16 2.25 0.92 2.01 2.22 1947 1.11 0.58 1.24 1.14 0.8 1.04 1.15 1948 0.83 0.43 1.17 0.82 0.89 0.96 1.28 1949 1.68 0.72 1.91 1.78 1.32 1.64 2.06 1950 1.4 0.55 1.52 1.5 1.06 1.12 1.32 1951 1.62 0.81 1.76 1.82 1.45 1.5 1.61 1952 1.84 0.77 1.7 1.77 1.32 1.32 1.58 1953 2.04 1.1 1.72 2.04 1.44 1.41 2.32 1954 1.48 0.73 1.47 1.31 1.03 1.2 1.56 1955 1.44 0.9 1.64 1.48 1.11 2.08 2.76 1956 0.91 1.02 1.34 1.22 0.88 1.25 1.69 1957 1.04 0.96 1.39 1.16 1.04 0.96 0.88 1958 1.81 1.56 1.8 1.56 1.38 1.62 1.72 1959 0.96 0.94 1.04 1.1 0.92 1.15 0.93 1960 1.02 1.05 1.04 0.96 1.04 1.23 1.02 1961 1.61 1.48 1.46 1.5 1.32 1.64 1.42 1962 1.58 1.6 2.02 1.68 1.16 2.04 1.47 1963 1.46 1.02 1.84 1.51 1.02 1.52 1.24 1964 1.45 0.98 1.57 1.4 1.11 1.68 1.43 1965 1.7 1.36 1.56 1.66 1.1 1.82 1.62 1966 2.34 1.66 1.78 1.78 1.23 1.98 1.66 1967 1.88 1.66 2.08 2.55 1.54 1.92 1.56 1968 1.24 1.12 1.26 1.62 1.22 1.65 1.04 1969 0.94 1 1.38 1.55 1.27 1.59 0.95 1970 1.2 1.26 1.76 1.8 1.27 1.77 0.92 1971 1.34 1.18 1.76 1.88 1.22 1.77 1.22 1972 2.06 1.62 2.64 2.5 1.36 1.82 1.59 1973 0.92 1.04 1.44 1.14 0.94 1.16 0.98 1974 1.16 1.08 2.04 1.76 0.72 1.62 1.34 1975 1.15 1.16 1.57 1.4 1.18 1.55 1.2 1976 0.96 0.8 1.04 0.8 0.92 0.98 1.04 1977 1.12 0.89 1.76 1.62 1.15 1.65 1.49 1978 1.02 1.14 1.75 1.62 0.92 1.5 1.24 1979 1.2 0.95 1.88 1.79 1.18 1.74 1.36 1980 1.3 1.1 2.09 1.66 0.92 2.02 1.36 1981 1.44 0.96 2.02 1.82 0.88 1.6 1.34 1982 1.31 0.98 1.62 1.5 1.02 1.47 1.26 1983 1.06 0.78 1.54 1.35 0.79 1.25 1.28 1984 1.22 1.26 2.23 1.74 1.06 1.51 1.66 1985 1.44 1.48 2.26 1.86 0.84 1.68 1.32 1986 1.34 1.02 1.55 1.89 1.24 1.78 1.66 1987 0.89 0.76 1.34 1.47 0.93 1.26 1.5 1988 0.86 0.73 0.91 0.92 0.78 0.98 1.17 1989 0.72 0.92 1.2 1.01 0.84 1.14 1.25 1990 0.9 1.42 1.63 1.54 1.13 1.58 1.74 1991 1.12 1.36 1.54 1.56 0.91 1.22 1.52 1992 1.4 1.32 1.67 1.57 0.91 1.66 1.8 1993 0.78 0.98 1.19 1.12 1 1.48 1.67 1994 1.19 0.98 1.48 1.3 1.26 1.35 1.62 1995 0.66 0.72 0.9 1.02 0.84 1.04 1 1996 0.54 0.5 0.62 0.7 0.7 0.8 0.94 1997 0.78 0.84 1.17 0.94 0.8 1.02 1 1998 0.64 1.02 0.91 0.94 0.95 1.2 1.38 1999 0.98 1.4 1.04 1.26 0.98 1.48 1.74 2000 0.83 1.1 1.1 0.91 0.87 1.26 1.71 2001 0.89 1.42 1.24 1.18 1.04 1.56 1.33 2002 1.08 1.49 1.24 1.88 1 1.54 1.78 2003 1.15 1.21 1.14 1.3 1.02 1.49 1.57 2004 0.91 1.48 0.76 1.4 0.79 1.18 1.36 2005 0.76 1.08 0.84 1.58 0.94 1.43 1.34