# southamerica_arge085 - Lago Terraplen - Breitenmoser Tree Ring Chronology Data #----------------------------------------------------------------------- # World Data Center for Paleoclimatology, Boulder # and # NOAA Paleoclimatology Program #----------------------------------------------------------------------- # NOTE: Please cite Publication, and Online_Resource and date accessed when using these data. # If there is no publication information, please cite Investigators, Title, and Online_Resource and date accessed. # # # Online_Resource: # # Original_Source_URL: # # Description/Documentation lines begin with # # Data lines have no # # # Archive: Tree Rings #-------------------- # Contribution_Date # Date: 2016-01-07 #-------------------- # Title # Study_Name: southamerica_arge085 - Lago Terraplen - Breitenmoser Tree Ring Chronology Data #-------------------- # Investigators # Investigators: Breitenmoser, P.; Bronnimann, S.; Frank, D. #-------------------- # Description_and_Notes # Description: Data from Breitenmoser 2014 Journal of past Climate supplementary, see publication for ARSTAN standardization details #-------------------- # Publication # Authors: Breitenmoser, P.; Bronnimann, S.; Frank, D. # Published_Date_or_Year: 2014-03-11 # Published_Title: Forward modelling of tree-ring width and comparison with a global network of tree-ring chronologies # Journal_Name: Climate of the Past # Volume: 10 # Edition: # Issue: # Pages: 437-449 # DOI: 10.5194/cp-10-437-2014 # Online_Resource: www.clim-past.net/10/437/2014/ # Full_Citation: # Abstract: We investigate relationships between climate and tree-ring data on a global scale using the process-based Vaganov–Shashkin Lite (VSL) forward model of tree-ring width formation. The VSL model requires as inputs only latitude, monthly mean temperature, and monthly accumulated precipitation. Hence, this simple, process-based model enables ring-width simulation at any location where monthly climate records exist. In this study, we analyse the growth response of simulated tree rings to monthly climate conditions obtained from the CRU TS3.1 data set back to 1901. Our key aims are (a) to assess the VSL model performance by examining the relations between simulated and observed growth at 2287 globally distributed sites, (b) indentify optimal growth parameters found during the model calibration, and (c) to evaluate the potential of the VSL model as an observation operator for data-assimilation-based reconstructions of climate from tree-ring width. The assessment of the growth-onset threshold temperature of approximately 4–6 C for most sites and species using a Bayesian estimation approach complements other studies on the lower temperature limits where plant growth may be sustained. Our results suggest that the VSL model skilfully simulates site level treering series in response to climate forcing for a wide range of environmental conditions and species. Spatial aggregation of the tree-ring chronologies to reduce non-climatic noise at the site level yielded notable improvements in the coherence between modelled and actual growth. The resulting distinct and coherent patterns of significant relationships between the aggregated and simulated series further demonstrate the VSL model’s ability to skilfully capture the climatic signal contained in tree-ring series. Finally, we propose that the VSL model can be used as an observation operator in data assimilation approaches to reconstruct past climate. #-------------------- # Funding_Agency # Funding_Agency_Name: Swiss National Science Foundation # Grant: #-------------------- # Site_Information # Site_Name: Lago Terraplen # Location: # Country: Argentina # Northernmost_Latitude: -43.02 # Southernmost_Latitude: -43.02 # Easternmost_Longitude: -71.57 # Westernmost_Longitude: -71.57 # Elevation: 650 m #-------------------- # Data_Collection # Collection_Name: southamerica_arge085B # Earliest_Year: 1818 # Most_Recent_Year: 1974 # Time_Unit: y_ad # Core_Length: # Notes: {"sensitivity":"temperature"}{"T1":"2.50440792619"}{"T2":"11.4146074022"}{"M1":"0.0235643626227"}{"M2":"0.619086801901"} #-------------------- # Species # Species_Name: Chilean cedar # Species_Code: AUCH #-------------------- # Chronology: # # # #-------------------- # Variables # # Data variables follow that are preceded by ## in columns one and two. # Data line variables format: Variables list, one per line, shortname-tab-longname-tab-longname components (9 components: what, material, error, units, seasonality, archive, detail, method, C or N for Character or Numeric data) # ##age age, , ,years AD, , , , ,N ##trsgi tree ring standardized growth index, tree ring, ,percent relative to mean growth, , Tree Rings, , ,N # #-------------------- # Data: # Data lines follow (have no #) # Data line format - tab-delimited text, variable short name as header # Missing Values: nan # age trsgi 1818 1.009 1819 1.051 1820 0.86 1821 0.592 1822 0.655 1823 0.852 1824 0.855 1825 1.336 1826 1.245 1827 0.763 1828 1.071 1829 0.964 1830 1.227 1831 1.138 1832 1.174 1833 1.169 1834 1.405 1835 1.352 1836 1.095 1837 1.202 1838 1.133 1839 1.037 1840 1.085 1841 0.845 1842 1.154 1843 1.273 1844 1.251 1845 0.603 1846 0.783 1847 0.676 1848 0.641 1849 0.789 1850 0.876 1851 0.779 1852 1.04 1853 1.064 1854 1.03 1855 0.915 1856 1.133 1857 1.2 1858 1.014 1859 0.856 1860 0.738 1861 0.621 1862 0.87 1863 0.596 1864 0.507 1865 0.69 1866 0.862 1867 0.938 1868 1.218 1869 1.213 1870 1.361 1871 1.006 1872 1.312 1873 1.3 1874 1.078 1875 0.845 1876 0.766 1877 0.565 1878 0.934 1879 1.211 1880 1.294 1881 1.017 1882 0.878 1883 0.932 1884 0.699 1885 0.721 1886 0.779 1887 1.072 1888 0.942 1889 1.154 1890 1.172 1891 0.982 1892 1.061 1893 0.979 1894 1.013 1895 1.006 1896 0.787 1897 0.815 1898 1.094 1899 1.123 1900 0.958 1901 0.775 1902 0.835 1903 0.999 1904 0.575 1905 0.955 1906 0.712 1907 0.961 1908 0.798 1909 0.865 1910 0.854 1911 0.598 1912 0.852 1913 0.648 1914 0.876 1915 1.037 1916 0.949 1917 0.744 1918 1.023 1919 0.98 1920 1.392 1921 1.691 1922 0.756 1923 0.874 1924 0.853 1925 1.162 1926 1.596 1927 1.147 1928 1.494 1929 1.374 1930 1.037 1931 0.893 1932 0.985 1933 1.007 1934 0.704 1935 1.098 1936 1.286 1937 0.743 1938 1.217 1939 0.954 1940 0.695 1941 0.956 1942 0.66 1943 0.384 1944 0.654 1945 0.892 1946 1.366 1947 1.043 1948 1.047 1949 1.068 1950 1.043 1951 1.133 1952 1.176 1953 0.807 1954 0.945 1955 0.99 1956 0.77 1957 0.534 1958 0.74 1959 0.789 1960 1.031 1961 1.149 1962 0.612 1963 0.982 1964 1.307 1965 1.46 1966 1.258 1967 1.219 1968 1.141 1969 0.949 1970 1.151 1971 1.308 1972 0.946 1973 0.784 1974 0.835