# northamerica_usa_nc1 - Hampton Hills - Breitenmoser Tree Ring Chronology Data #----------------------------------------------------------------------- # World Data Center for Paleoclimatology, Boulder # and # NOAA Paleoclimatology Program #----------------------------------------------------------------------- # NOTE: Please cite Publication, and Online_Resource and date accessed when using these data. # If there is no publication information, please cite Investigators, Title, and Online_Resource and date accessed. # # # Online_Resource: # # Original_Source_URL: # # Description/Documentation lines begin with # # Data lines have no # # # Archive: Tree Rings #-------------------- # Contribution_Date # Date: 2016-01-07 #-------------------- # Title # Study_Name: northamerica_usa_nc1 - Hampton Hills - Breitenmoser Tree Ring Chronology Data #-------------------- # Investigators # Investigators: Breitenmoser, P.; Bronnimann, S.; Frank, D. #-------------------- # Description_and_Notes # Description: Data from Breitenmoser 2014 Journal of past Climate supplementary, see publication for ARSTAN standardization details #-------------------- # Publication # Authors: Breitenmoser, P.; Bronnimann, S.; Frank, D. # Published_Date_or_Year: 2014-03-11 # Published_Title: Forward modelling of tree-ring width and comparison with a global network of tree-ring chronologies # Journal_Name: Climate of the Past # Volume: 10 # Edition: # Issue: # Pages: 437-449 # DOI: 10.5194/cp-10-437-2014 # Online_Resource: www.clim-past.net/10/437/2014/ # Full_Citation: # Abstract: We investigate relationships between climate and tree-ring data on a global scale using the process-based Vaganov–Shashkin Lite (VSL) forward model of tree-ring width formation. The VSL model requires as inputs only latitude, monthly mean temperature, and monthly accumulated precipitation. Hence, this simple, process-based model enables ring-width simulation at any location where monthly climate records exist. In this study, we analyse the growth response of simulated tree rings to monthly climate conditions obtained from the CRU TS3.1 data set back to 1901. Our key aims are (a) to assess the VSL model performance by examining the relations between simulated and observed growth at 2287 globally distributed sites, (b) indentify optimal growth parameters found during the model calibration, and (c) to evaluate the potential of the VSL model as an observation operator for data-assimilation-based reconstructions of climate from tree-ring width. The assessment of the growth-onset threshold temperature of approximately 4–6 C for most sites and species using a Bayesian estimation approach complements other studies on the lower temperature limits where plant growth may be sustained. Our results suggest that the VSL model skilfully simulates site level treering series in response to climate forcing for a wide range of environmental conditions and species. Spatial aggregation of the tree-ring chronologies to reduce non-climatic noise at the site level yielded notable improvements in the coherence between modelled and actual growth. The resulting distinct and coherent patterns of significant relationships between the aggregated and simulated series further demonstrate the VSL model’s ability to skilfully capture the climatic signal contained in tree-ring series. Finally, we propose that the VSL model can be used as an observation operator in data assimilation approaches to reconstruct past climate. #-------------------- # Funding_Agency # Funding_Agency_Name: Swiss National Science Foundation # Grant: #-------------------- # Site_Information # Site_Name: Hampton Hills # Location: # Country: United States # Northernmost_Latitude: 35.82 # Southernmost_Latitude: 35.82 # Easternmost_Longitude: -78.68 # Westernmost_Longitude: -78.68 # Elevation: 108 m #-------------------- # Data_Collection # Collection_Name: northamerica_usa_nc1B # Earliest_Year: 1827 # Most_Recent_Year: 1991 # Time_Unit: y_ad # Core_Length: # Notes: {"sensitivity":"moisture"}{"T1":"6.01906063691"}{"T2":"17.4184554633"}{"M1":"0.0223780391078"}{"M2":"0.57178396821"} #-------------------- # Species # Species_Name: white oak # Species_Code: QUAL #-------------------- # Chronology: # # # #-------------------- # Variables # # Data variables follow that are preceded by ## in columns one and two. # Data line variables format: Variables list, one per line, shortname-tab-longname-tab-longname components (9 components: what, material, error, units, seasonality, archive, detail, method, C or N for Character or Numeric data) # ##age age, , ,years AD, , , , ,N ##trsgi tree ring standardized growth index, tree ring, ,percent relative to mean growth, , Tree Rings, , ,N # #-------------------- # Data: # Data lines follow (have no #) # Data line format - tab-delimited text, variable short name as header # Missing Values: nan # age trsgi 1827 0.824 1828 0.709 1829 0.812 1830 0.71 1831 0.803 1832 0.793 1833 0.72 1834 0.75 1835 0.683 1836 0.776 1837 0.703 1838 0.65 1839 0.611 1840 0.649 1841 0.681 1842 0.608 1843 0.57 1844 0.485 1845 0.576 1846 0.708 1847 0.733 1848 0.608 1849 0.716 1850 0.694 1851 0.608 1852 0.673 1853 0.627 1854 0.711 1855 0.855 1856 0.742 1857 0.715 1858 0.565 1859 0.547 1860 0.71 1861 0.793 1862 0.844 1863 0.759 1864 0.759 1865 0.732 1866 0.825 1867 0.869 1868 0.887 1869 0.922 1870 1.098 1871 0.962 1872 1.162 1873 1.088 1874 1.146 1875 1.342 1876 1.216 1877 1.336 1878 1.096 1879 1.062 1880 0.734 1881 0.883 1882 1.334 1883 1.353 1884 1.689 1885 1.07 1886 1.639 1887 1.476 1888 1.383 1889 1.908 1890 1.345 1891 1.829 1892 1.255 1893 1.234 1894 1.396 1895 1.677 1896 1.295 1897 1.128 1898 1.026 1899 1.189 1900 1.174 1901 1.237 1902 0.862 1903 1.152 1904 1.083 1905 1.386 1906 1.015 1907 1.001 1908 0.95 1909 1.017 1910 1.067 1911 0.548 1912 0.918 1913 0.758 1914 0.713 1915 0.857 1916 0.933 1917 1.041 1918 0.796 1919 1.029 1920 0.913 1921 0.861 1922 0.767 1923 0.581 1924 1.064 1925 0.878 1926 0.863 1927 0.837 1928 1.045 1929 0.961 1930 0.791 1931 0.855 1932 0.855 1933 0.514 1934 0.821 1935 0.771 1936 0.752 1937 0.713 1938 1.06 1939 0.721 1940 0.817 1941 0.624 1942 0.672 1943 0.68 1944 0.547 1945 0.876 1946 1.029 1947 0.886 1948 0.902 1949 0.953 1950 0.869 1951 0.671 1952 0.565 1953 0.716 1954 0.792 1955 0.682 1956 0.853 1957 0.864 1958 1.095 1959 0.82 1960 0.806 1961 0.87 1962 0.763 1963 0.954 1964 0.825 1965 1.018 1966 0.83 1967 1.039 1968 1.082 1969 1.037 1970 0.985 1971 1.104 1972 1.432 1973 1.373 1974 0.965 1975 0.927 1976 1.064 1977 0.906 1978 1.029 1979 1.066 1980 1.252 1981 1.193 1982 1.529 1983 1.345 1984 1.262 1985 0.962 1986 0.79 1987 0.75 1988 1.101 1989 1.223 1990 1.174 1991 1.046