# northamerica_usa_ca539 - San Bernardino Mountains D - Breitenmoser Tree Ring Chronology Data #----------------------------------------------------------------------- # World Data Center for Paleoclimatology, Boulder # and # NOAA Paleoclimatology Program #----------------------------------------------------------------------- # NOTE: Please cite Publication, and Online_Resource and date accessed when using these data. # If there is no publication information, please cite Investigators, Title, and Online_Resource and date accessed. # # # Online_Resource: # # Original_Source_URL: # # Description/Documentation lines begin with # # Data lines have no # # # Archive: Tree Rings #-------------------- # Contribution_Date # Date: 2016-01-07 #-------------------- # Title # Study_Name: northamerica_usa_ca539 - San Bernardino Mountains D - Breitenmoser Tree Ring Chronology Data #-------------------- # Investigators # Investigators: Breitenmoser, P.; Bronnimann, S.; Frank, D. #-------------------- # Description_and_Notes # Description: Data from Breitenmoser 2014 Journal of past Climate supplementary, see publication for ARSTAN standardization details #-------------------- # Publication # Authors: Breitenmoser, P.; Bronnimann, S.; Frank, D. # Published_Date_or_Year: 2014-03-11 # Published_Title: Forward modelling of tree-ring width and comparison with a global network of tree-ring chronologies # Journal_Name: Climate of the Past # Volume: 10 # Edition: # Issue: # Pages: 437-449 # DOI: 10.5194/cp-10-437-2014 # Online_Resource: www.clim-past.net/10/437/2014/ # Full_Citation: # Abstract: We investigate relationships between climate and tree-ring data on a global scale using the process-based Vaganov–Shashkin Lite (VSL) forward model of tree-ring width formation. The VSL model requires as inputs only latitude, monthly mean temperature, and monthly accumulated precipitation. Hence, this simple, process-based model enables ring-width simulation at any location where monthly climate records exist. In this study, we analyse the growth response of simulated tree rings to monthly climate conditions obtained from the CRU TS3.1 data set back to 1901. Our key aims are (a) to assess the VSL model performance by examining the relations between simulated and observed growth at 2287 globally distributed sites, (b) indentify optimal growth parameters found during the model calibration, and (c) to evaluate the potential of the VSL model as an observation operator for data-assimilation-based reconstructions of climate from tree-ring width. The assessment of the growth-onset threshold temperature of approximately 4–6 C for most sites and species using a Bayesian estimation approach complements other studies on the lower temperature limits where plant growth may be sustained. Our results suggest that the VSL model skilfully simulates site level treering series in response to climate forcing for a wide range of environmental conditions and species. Spatial aggregation of the tree-ring chronologies to reduce non-climatic noise at the site level yielded notable improvements in the coherence between modelled and actual growth. The resulting distinct and coherent patterns of significant relationships between the aggregated and simulated series further demonstrate the VSL model’s ability to skilfully capture the climatic signal contained in tree-ring series. Finally, we propose that the VSL model can be used as an observation operator in data assimilation approaches to reconstruct past climate. #-------------------- # Funding_Agency # Funding_Agency_Name: Swiss National Science Foundation # Grant: #-------------------- # Site_Information # Site_Name: San Bernardino Mountains D # Location: # Country: United States # Northernmost_Latitude: 33.98 # Southernmost_Latitude: 33.98 # Easternmost_Longitude: -116.75 # Westernmost_Longitude: -116.75 # Elevation: 1600 m #-------------------- # Data_Collection # Collection_Name: northamerica_usa_ca539B # Earliest_Year: 1831 # Most_Recent_Year: 1988 # Time_Unit: y_ad # Core_Length: # Notes: {"sensitivity":"moisture"}{"T1":"3.82667319143"}{"T2":"16.1289647604"}{"M1":"0.0232975236128"}{"M2":"0.474902289833"} #-------------------- # Species # Species_Name: bigcone Douglas fir # Species_Code: PSMA #-------------------- # Chronology: # # # #-------------------- # Variables # # Data variables follow that are preceded by ## in columns one and two. # Data line variables format: Variables list, one per line, shortname-tab-longname-tab-longname components (9 components: what, material, error, units, seasonality, archive, detail, method, C or N for Character or Numeric data) # ##age age, , ,years AD, , , , ,N ##trsgi tree ring standardized growth index, tree ring, ,percent relative to mean growth, , Tree Rings, , ,N # #-------------------- # Data: # Data lines follow (have no #) # Data line format - tab-delimited text, variable short name as header # Missing Values: nan # age trsgi 1831 1.215 1832 1.457 1833 1.546 1834 0.965 1835 0.811 1836 1.151 1837 1.016 1838 1.255 1839 1.663 1840 1.373 1841 0.607 1842 0.716 1843 0.455 1844 0.774 1845 0.071 1846 0.823 1847 0.863 1848 1.069 1849 1.018 1850 1.18 1851 1.154 1852 1.204 1853 1.493 1854 1.473 1855 1.338 1856 0.838 1857 0.441 1858 0.85 1859 1.066 1860 0.673 1861 0.742 1862 0.92 1863 0.558 1864 0.185 1865 0.577 1866 0.75 1867 0.759 1868 1.444 1869 1.292 1870 1.304 1871 0.707 1872 0.941 1873 0.325 1874 0.869 1875 0.702 1876 0.792 1877 0.574 1878 0.818 1879 0.001 1880 0.789 1881 0.642 1882 0.673 1883 0.722 1884 1.153 1885 1.193 1886 1.427 1887 1.142 1888 1.186 1889 1.003 1890 1.452 1891 1.71 1892 1.765 1893 1.378 1894 1.224 1895 1.156 1896 0.624 1897 0.903 1898 0.948 1899 0.476 1900 0.74 1901 1.185 1902 0.966 1903 1.236 1904 0.622 1905 1.131 1906 1.561 1907 1.52 1908 1.443 1909 1.436 1910 1.044 1911 1.023 1912 0.956 1913 1.209 1914 1.211 1915 1.429 1916 1.442 1917 1.643 1918 1.041 1919 0.599 1920 1.246 1921 1.391 1922 1.26 1923 1.271 1924 1.045 1925 1.006 1926 1.157 1927 1.026 1928 0.74 1929 0.968 1930 1.078 1931 0.803 1932 1.033 1933 0.95 1934 0.32 1935 0.964 1936 0.684 1937 1.011 1938 1.164 1939 1.125 1940 1.14 1941 1.197 1942 1.029 1943 0.869 1944 1.316 1945 1.229 1946 1.014 1947 1.038 1948 0.764 1949 0.817 1950 0.885 1951 0.32 1952 0.875 1953 1.164 1954 1.031 1955 0.629 1956 0.897 1957 0.835 1958 1.292 1959 0.394 1960 0.848 1961 -0.066 1962 0.689 1963 0.252 1964 0.781 1965 0.883 1966 0.762 1967 1.174 1968 0.867 1969 1.111 1970 0.628 1971 0.68 1972 -0.009 1973 0.78 1974 0.766 1975 1.061 1976 0.849 1977 1.27 1978 0.98 1979 1.272 1980 1.808 1981 0.773 1982 1.354 1983 2.332 1984 0.911 1985 1.118 1986 1.211 1987 0.891 1988 0.788