# europe_neth030 - Mattemburgh Sub-dominant Trees - Breitenmoser Tree Ring Chronology Data #----------------------------------------------------------------------- # World Data Center for Paleoclimatology, Boulder # and # NOAA Paleoclimatology Program #----------------------------------------------------------------------- # NOTE: Please cite Publication, and Online_Resource and date accessed when using these data. # If there is no publication information, please cite Investigators, Title, and Online_Resource and date accessed. # # # Online_Resource: # # Original_Source_URL: # # Description/Documentation lines begin with # # Data lines have no # # # Archive: Tree Rings #-------------------- # Contribution_Date # Date: 2016-01-07 #-------------------- # Title # Study_Name: europe_neth030 - Mattemburgh Sub-dominant Trees - Breitenmoser Tree Ring Chronology Data #-------------------- # Investigators # Investigators: Breitenmoser, P.; Bronnimann, S.; Frank, D. #-------------------- # Description_and_Notes # Description: Data from Breitenmoser 2014 Journal of past Climate supplementary, see publication for ARSTAN standardization details #-------------------- # Publication # Authors: Breitenmoser, P.; Bronnimann, S.; Frank, D. # Published_Date_or_Year: 2014-03-11 # Published_Title: Forward modelling of tree-ring width and comparison with a global network of tree-ring chronologies # Journal_Name: Climate of the Past # Volume: 10 # Edition: # Issue: # Pages: 437-449 # DOI: 10.5194/cp-10-437-2014 # Online_Resource: www.clim-past.net/10/437/2014/ # Full_Citation: # Abstract: We investigate relationships between climate and tree-ring data on a global scale using the process-based Vaganov–Shashkin Lite (VSL) forward model of tree-ring width formation. The VSL model requires as inputs only latitude, monthly mean temperature, and monthly accumulated precipitation. Hence, this simple, process-based model enables ring-width simulation at any location where monthly climate records exist. In this study, we analyse the growth response of simulated tree rings to monthly climate conditions obtained from the CRU TS3.1 data set back to 1901. Our key aims are (a) to assess the VSL model performance by examining the relations between simulated and observed growth at 2287 globally distributed sites, (b) indentify optimal growth parameters found during the model calibration, and (c) to evaluate the potential of the VSL model as an observation operator for data-assimilation-based reconstructions of climate from tree-ring width. The assessment of the growth-onset threshold temperature of approximately 4–6 C for most sites and species using a Bayesian estimation approach complements other studies on the lower temperature limits where plant growth may be sustained. Our results suggest that the VSL model skilfully simulates site level treering series in response to climate forcing for a wide range of environmental conditions and species. Spatial aggregation of the tree-ring chronologies to reduce non-climatic noise at the site level yielded notable improvements in the coherence between modelled and actual growth. The resulting distinct and coherent patterns of significant relationships between the aggregated and simulated series further demonstrate the VSL model’s ability to skilfully capture the climatic signal contained in tree-ring series. Finally, we propose that the VSL model can be used as an observation operator in data assimilation approaches to reconstruct past climate. #-------------------- # Funding_Agency # Funding_Agency_Name: Swiss National Science Foundation # Grant: #-------------------- # Site_Information # Site_Name: Mattemburgh Sub-dominant Trees # Location: # Country: Netherlands # Northernmost_Latitude: 51.45 # Southernmost_Latitude: 51.45 # Easternmost_Longitude: 4.32 # Westernmost_Longitude: 4.32 # Elevation: 5 m #-------------------- # Data_Collection # Collection_Name: europe_neth030B # Earliest_Year: 1849 # Most_Recent_Year: 1991 # Time_Unit: y_ad # Core_Length: # Notes: {"sensitivity":"temperature"}{"T1":"5.47230616868"}{"T2":"18.7764101114"}{"M1":"0.0220219632326"}{"M2":"0.291232182585"} #-------------------- # Species # Species_Name: English oak # Species_Code: QURO #-------------------- # Chronology: # # # #-------------------- # Variables # # Data variables follow that are preceded by ## in columns one and two. # Data line variables format: Variables list, one per line, shortname-tab-longname-tab-longname components (9 components: what, material, error, units, seasonality, archive, detail, method, C or N for Character or Numeric data) # ##age age, , ,years AD, , , , ,N ##trsgi tree ring standardized growth index, tree ring, ,percent relative to mean growth, , Tree Rings, , ,N # #-------------------- # Data: # Data lines follow (have no #) # Data line format - tab-delimited text, variable short name as header # Missing Values: nan # age trsgi 1849 1.214 1850 1.19 1851 1.138 1852 1.014 1853 0.928 1854 0.901 1855 0.978 1856 0.859 1857 0.885 1858 0.834 1859 0.898 1860 0.988 1861 1.046 1862 1.117 1863 1.116 1864 1.141 1865 1.128 1866 1.037 1867 1.121 1868 1.116 1869 1.136 1870 1.033 1871 1.023 1872 1.023 1873 0.93 1874 0.966 1875 0.954 1876 1.005 1877 0.91 1878 0.982 1879 1.028 1880 1.062 1881 0.959 1882 0.954 1883 0.922 1884 0.942 1885 0.946 1886 1.052 1887 0.981 1888 0.926 1889 0.958 1890 0.939 1891 0.934 1892 0.93 1893 0.962 1894 0.937 1895 0.914 1896 1.017 1897 0.936 1898 0.965 1899 0.884 1900 0.884 1901 0.88 1902 0.826 1903 0.805 1904 0.759 1905 0.782 1906 0.797 1907 0.857 1908 0.882 1909 0.936 1910 0.998 1911 1.011 1912 0.923 1913 0.92 1914 0.917 1915 0.924 1916 0.947 1917 0.929 1918 0.897 1919 0.866 1920 0.855 1921 0.853 1922 0.878 1923 0.931 1924 0.946 1925 0.925 1926 0.914 1927 0.921 1928 0.874 1929 0.885 1930 0.949 1931 0.995 1932 1.048 1933 1.082 1934 0.987 1935 0.945 1936 1.022 1937 1.114 1938 1.08 1939 1.037 1940 0.966 1941 0.911 1942 0.995 1943 1.032 1944 1.061 1945 1.05 1946 1.192 1947 1.202 1948 1.195 1949 1.173 1950 1.104 1951 1.234 1952 1.117 1953 1.229 1954 1.106 1955 1.061 1956 1.126 1957 1.015 1958 1.174 1959 1.189 1960 1.13 1961 1.026 1962 1.023 1963 0.976 1964 0.878 1965 0.814 1966 0.78 1967 0.886 1968 0.932 1969 0.965 1970 0.909 1971 1.014 1972 0.982 1973 0.968 1974 0.959 1975 0.906 1976 0.927 1977 0.901 1978 0.93 1979 0.923 1980 0.868 1981 0.957 1982 0.95 1983 0.803 1984 0.696 1985 0.765 1986 0.863 1987 0.902 1988 0.922 1989 1.246 1990 1.225 1991 1.211