# europe_lith016 - Sirguske - Breitenmoser Tree Ring Chronology Data #----------------------------------------------------------------------- # World Data Center for Paleoclimatology, Boulder # and # NOAA Paleoclimatology Program #----------------------------------------------------------------------- # NOTE: Please cite Publication, and Online_Resource and date accessed when using these data. # If there is no publication information, please cite Investigators, Title, and Online_Resource and date accessed. # # # Online_Resource: # # Original_Source_URL: # # Description/Documentation lines begin with # # Data lines have no # # # Archive: Tree Rings #-------------------- # Contribution_Date # Date: 2016-01-07 #-------------------- # Title # Study_Name: europe_lith016 - Sirguske - Breitenmoser Tree Ring Chronology Data #-------------------- # Investigators # Investigators: Breitenmoser, P.; Bronnimann, S.; Frank, D. #-------------------- # Description_and_Notes # Description: Data from Breitenmoser 2014 Journal of past Climate supplementary, see publication for ARSTAN standardization details #-------------------- # Publication # Authors: Breitenmoser, P.; Bronnimann, S.; Frank, D. # Published_Date_or_Year: 2014-03-11 # Published_Title: Forward modelling of tree-ring width and comparison with a global network of tree-ring chronologies # Journal_Name: Climate of the Past # Volume: 10 # Edition: # Issue: # Pages: 437-449 # DOI: 10.5194/cp-10-437-2014 # Online_Resource: www.clim-past.net/10/437/2014/ # Full_Citation: # Abstract: We investigate relationships between climate and tree-ring data on a global scale using the process-based Vaganov–Shashkin Lite (VSL) forward model of tree-ring width formation. The VSL model requires as inputs only latitude, monthly mean temperature, and monthly accumulated precipitation. Hence, this simple, process-based model enables ring-width simulation at any location where monthly climate records exist. In this study, we analyse the growth response of simulated tree rings to monthly climate conditions obtained from the CRU TS3.1 data set back to 1901. Our key aims are (a) to assess the VSL model performance by examining the relations between simulated and observed growth at 2287 globally distributed sites, (b) indentify optimal growth parameters found during the model calibration, and (c) to evaluate the potential of the VSL model as an observation operator for data-assimilation-based reconstructions of climate from tree-ring width. The assessment of the growth-onset threshold temperature of approximately 4–6 C for most sites and species using a Bayesian estimation approach complements other studies on the lower temperature limits where plant growth may be sustained. Our results suggest that the VSL model skilfully simulates site level treering series in response to climate forcing for a wide range of environmental conditions and species. Spatial aggregation of the tree-ring chronologies to reduce non-climatic noise at the site level yielded notable improvements in the coherence between modelled and actual growth. The resulting distinct and coherent patterns of significant relationships between the aggregated and simulated series further demonstrate the VSL model’s ability to skilfully capture the climatic signal contained in tree-ring series. Finally, we propose that the VSL model can be used as an observation operator in data assimilation approaches to reconstruct past climate. #-------------------- # Funding_Agency # Funding_Agency_Name: Swiss National Science Foundation # Grant: #-------------------- # Site_Information # Site_Name: Sirguske # Location: # Country: Lithuania # Northernmost_Latitude: 53.93 # Southernmost_Latitude: 53.93 # Easternmost_Longitude: 23.72 # Westernmost_Longitude: 23.72 # Elevation: 100 m #-------------------- # Data_Collection # Collection_Name: europe_lith016B # Earliest_Year: 1866 # Most_Recent_Year: 2006 # Time_Unit: y_ad # Core_Length: # Notes: {"sensitivity":"moisture"}{"T1":"4.74199739783"}{"T2":"16.5098920939"}{"M1":"0.0225705626132"}{"M2":"0.456220894384"} #-------------------- # Species # Species_Name: European larch # Species_Code: LADE #-------------------- # Chronology: # # # #-------------------- # Variables # # Data variables follow that are preceded by ## in columns one and two. # Data line variables format: Variables list, one per line, shortname-tab-longname-tab-longname components (9 components: what, material, error, units, seasonality, archive, detail, method, C or N for Character or Numeric data) # ##age age, , ,years AD, , , , ,N ##trsgi tree ring standardized growth index, tree ring, ,percent relative to mean growth, , Tree Rings, , ,N # #-------------------- # Data: # Data lines follow (have no #) # Data line format - tab-delimited text, variable short name as header # Missing Values: nan # age trsgi 1866 0.92 1867 0.927 1868 0.864 1869 1.2 1870 0.994 1871 0.989 1872 1.451 1873 1.164 1874 0.949 1875 0.84 1876 1.518 1877 1.306 1878 0.891 1879 0.774 1880 0.841 1881 0.774 1882 0.999 1883 1.01 1884 0.404 1885 0.463 1886 0.847 1887 1.277 1888 1.344 1889 0.57 1890 0.782 1891 0.952 1892 1.023 1893 0.864 1894 0.767 1895 1.134 1896 0.938 1897 1.406 1898 1.171 1899 0.752 1900 0.442 1901 0.593 1902 0.883 1903 0.805 1904 0.995 1905 1.018 1906 1.054 1907 1.181 1908 1.302 1909 1.278 1910 1.311 1911 1.31 1912 1.075 1913 1.311 1914 1.164 1915 1.091 1916 1.629 1917 1.236 1918 1.477 1919 1.222 1920 0.661 1921 0.878 1922 1.096 1923 0.804 1924 0.442 1925 0.559 1926 0.753 1927 0.884 1928 1.004 1929 1.118 1930 0.689 1931 0.958 1932 0.956 1933 0.775 1934 1.042 1935 1.21 1936 1.541 1937 1.231 1938 1.07 1939 1.069 1940 0.839 1941 0.862 1942 0.881 1943 0.982 1944 1.286 1945 1.13 1946 1.177 1947 1.0 1948 1.079 1949 1.153 1950 1.264 1951 1.455 1952 1.288 1953 1.073 1954 1.037 1955 0.886 1956 0.748 1957 0.951 1958 0.991 1959 0.832 1960 0.91 1961 0.94 1962 0.875 1963 0.814 1964 0.624 1965 0.664 1966 0.877 1967 0.807 1968 0.73 1969 0.686 1970 0.831 1971 0.701 1972 0.874 1973 1.096 1974 0.969 1975 1.108 1976 0.754 1977 0.902 1978 1.028 1979 1.0 1980 0.954 1981 1.216 1982 0.942 1983 1.247 1984 0.825 1985 0.914 1986 1.157 1987 1.043 1988 1.245 1989 1.066 1990 1.12 1991 1.041 1992 0.587 1993 1.143 1994 0.896 1995 0.812 1996 0.936 1997 1.104 1998 0.919 1999 1.044 2000 0.787 2001 1.079 2002 1.083 2003 1.026 2004 0.998 2005 1.181 2006 0.676