# europe_fran6 - Ste. Baume (forest) - Breitenmoser Tree Ring Chronology Data #----------------------------------------------------------------------- # World Data Center for Paleoclimatology, Boulder # and # NOAA Paleoclimatology Program #----------------------------------------------------------------------- # NOTE: Please cite Publication, and Online_Resource and date accessed when using these data. # If there is no publication information, please cite Investigators, Title, and Online_Resource and date accessed. # # # Online_Resource: # # Original_Source_URL: # # Description/Documentation lines begin with # # Data lines have no # # # Archive: Tree Rings #-------------------- # Contribution_Date # Date: 2016-01-07 #-------------------- # Title # Study_Name: europe_fran6 - Ste. Baume (forest) - Breitenmoser Tree Ring Chronology Data #-------------------- # Investigators # Investigators: Breitenmoser, P.; Bronnimann, S.; Frank, D. #-------------------- # Description_and_Notes # Description: Data from Breitenmoser 2014 Journal of past Climate supplementary, see publication for ARSTAN standardization details #-------------------- # Publication # Authors: Breitenmoser, P.; Bronnimann, S.; Frank, D. # Published_Date_or_Year: 2014-03-11 # Published_Title: Forward modelling of tree-ring width and comparison with a global network of tree-ring chronologies # Journal_Name: Climate of the Past # Volume: 10 # Edition: # Issue: # Pages: 437-449 # DOI: 10.5194/cp-10-437-2014 # Online_Resource: www.clim-past.net/10/437/2014/ # Full_Citation: # Abstract: We investigate relationships between climate and tree-ring data on a global scale using the process-based Vaganov–Shashkin Lite (VSL) forward model of tree-ring width formation. The VSL model requires as inputs only latitude, monthly mean temperature, and monthly accumulated precipitation. Hence, this simple, process-based model enables ring-width simulation at any location where monthly climate records exist. In this study, we analyse the growth response of simulated tree rings to monthly climate conditions obtained from the CRU TS3.1 data set back to 1901. Our key aims are (a) to assess the VSL model performance by examining the relations between simulated and observed growth at 2287 globally distributed sites, (b) indentify optimal growth parameters found during the model calibration, and (c) to evaluate the potential of the VSL model as an observation operator for data-assimilation-based reconstructions of climate from tree-ring width. The assessment of the growth-onset threshold temperature of approximately 4–6 C for most sites and species using a Bayesian estimation approach complements other studies on the lower temperature limits where plant growth may be sustained. Our results suggest that the VSL model skilfully simulates site level treering series in response to climate forcing for a wide range of environmental conditions and species. Spatial aggregation of the tree-ring chronologies to reduce non-climatic noise at the site level yielded notable improvements in the coherence between modelled and actual growth. The resulting distinct and coherent patterns of significant relationships between the aggregated and simulated series further demonstrate the VSL model’s ability to skilfully capture the climatic signal contained in tree-ring series. Finally, we propose that the VSL model can be used as an observation operator in data assimilation approaches to reconstruct past climate. #-------------------- # Funding_Agency # Funding_Agency_Name: Swiss National Science Foundation # Grant: #-------------------- # Site_Information # Site_Name: Ste. Baume (forest) # Location: # Country: France # Northernmost_Latitude: 43.32 # Southernmost_Latitude: 43.32 # Easternmost_Longitude: 5.73 # Westernmost_Longitude: 5.73 # Elevation: 750 m #-------------------- # Data_Collection # Collection_Name: europe_fran6B # Earliest_Year: 1840 # Most_Recent_Year: 1982 # Time_Unit: y_ad # Core_Length: # Notes: {"sensitivity":"moisture"}{"T1":"5.20167826701"}{"T2":"16.1774479611"}{"M1":"0.0223238404044"}{"M2":"0.503707774386"} #-------------------- # Species # Species_Name: Scots pine # Species_Code: PISY #-------------------- # Chronology: # # # #-------------------- # Variables # # Data variables follow that are preceded by ## in columns one and two. # Data line variables format: Variables list, one per line, shortname-tab-longname-tab-longname components (9 components: what, material, error, units, seasonality, archive, detail, method, C or N for Character or Numeric data) # ##age age, , ,years AD, , , , ,N ##trsgi tree ring standardized growth index, tree ring, ,percent relative to mean growth, , Tree Rings, , ,N # #-------------------- # Data: # Data lines follow (have no #) # Data line format - tab-delimited text, variable short name as header # Missing Values: nan # age trsgi 1840 0.431 1841 1.098 1842 0.972 1843 1.149 1844 1.071 1845 1.04 1846 1.151 1847 0.709 1848 1.01 1849 0.758 1850 1.051 1851 1.288 1852 1.342 1853 1.138 1854 1.244 1855 0.941 1856 0.971 1857 1.059 1858 0.904 1859 0.956 1860 0.775 1861 0.85 1862 0.896 1863 0.993 1864 0.963 1865 0.842 1866 0.936 1867 0.878 1868 0.992 1869 0.779 1870 0.597 1871 0.87 1872 0.995 1873 0.615 1874 0.749 1875 0.892 1876 0.976 1877 0.877 1878 0.884 1879 0.702 1880 1.07 1881 0.882 1882 0.863 1883 0.935 1884 1.037 1885 1.068 1886 0.803 1887 0.55 1888 0.793 1889 0.828 1890 0.99 1891 1.043 1892 0.925 1893 0.866 1894 0.878 1895 1.033 1896 1.079 1897 1.174 1898 1.026 1899 0.937 1900 0.796 1901 0.618 1902 0.748 1903 0.937 1904 0.941 1905 0.904 1906 0.848 1907 0.829 1908 0.567 1909 0.75 1910 1.138 1911 1.349 1912 1.484 1913 1.421 1914 1.359 1915 1.304 1916 0.979 1917 0.746 1918 0.917 1919 1.196 1920 1.23 1921 0.865 1922 0.775 1923 1.156 1924 1.07 1925 1.145 1926 1.312 1927 1.149 1928 1.076 1929 1.141 1930 1.435 1931 1.067 1932 1.6 1933 1.659 1934 1.242 1935 1.235 1936 1.039 1937 1.111 1938 1.226 1939 1.194 1940 1.37 1941 1.324 1942 1.016 1943 1.252 1944 1.102 1945 0.841 1946 0.766 1947 0.515 1948 0.869 1949 1.247 1950 0.994 1951 0.96 1952 0.962 1953 1.038 1954 0.83 1955 1.027 1956 0.902 1957 1.011 1958 1.193 1959 1.173 1960 1.039 1961 1.32 1962 0.856 1963 1.183 1964 0.961 1965 0.55 1966 0.869 1967 0.944 1968 0.999 1969 1.16 1970 0.419 1971 0.425 1972 0.551 1973 0.414 1974 0.449 1975 0.57 1976 0.592 1977 0.614 1978 0.421 1979 0.511 1980 0.838 1981 0.812 1982 0.73