# europe_finl042 - Punkaharju Esker - Breitenmoser Tree Ring Chronology Data #----------------------------------------------------------------------- # World Data Center for Paleoclimatology, Boulder # and # NOAA Paleoclimatology Program #----------------------------------------------------------------------- # NOTE: Please cite Publication, and Online_Resource and date accessed when using these data. # If there is no publication information, please cite Investigators, Title, and Online_Resource and date accessed. # # # Online_Resource: # # Original_Source_URL: # # Description/Documentation lines begin with # # Data lines have no # # # Archive: Tree Rings #-------------------- # Contribution_Date # Date: 2016-01-07 #-------------------- # Title # Study_Name: europe_finl042 - Punkaharju Esker - Breitenmoser Tree Ring Chronology Data #-------------------- # Investigators # Investigators: Breitenmoser, P.; Bronnimann, S.; Frank, D. #-------------------- # Description_and_Notes # Description: Data from Breitenmoser 2014 Journal of past Climate supplementary, see publication for ARSTAN standardization details #-------------------- # Publication # Authors: Breitenmoser, P.; Bronnimann, S.; Frank, D. # Published_Date_or_Year: 2014-03-11 # Published_Title: Forward modelling of tree-ring width and comparison with a global network of tree-ring chronologies # Journal_Name: Climate of the Past # Volume: 10 # Edition: # Issue: # Pages: 437-449 # DOI: 10.5194/cp-10-437-2014 # Online_Resource: www.clim-past.net/10/437/2014/ # Full_Citation: # Abstract: We investigate relationships between climate and tree-ring data on a global scale using the process-based Vaganov–Shashkin Lite (VSL) forward model of tree-ring width formation. The VSL model requires as inputs only latitude, monthly mean temperature, and monthly accumulated precipitation. Hence, this simple, process-based model enables ring-width simulation at any location where monthly climate records exist. In this study, we analyse the growth response of simulated tree rings to monthly climate conditions obtained from the CRU TS3.1 data set back to 1901. Our key aims are (a) to assess the VSL model performance by examining the relations between simulated and observed growth at 2287 globally distributed sites, (b) indentify optimal growth parameters found during the model calibration, and (c) to evaluate the potential of the VSL model as an observation operator for data-assimilation-based reconstructions of climate from tree-ring width. The assessment of the growth-onset threshold temperature of approximately 4–6 C for most sites and species using a Bayesian estimation approach complements other studies on the lower temperature limits where plant growth may be sustained. Our results suggest that the VSL model skilfully simulates site level treering series in response to climate forcing for a wide range of environmental conditions and species. Spatial aggregation of the tree-ring chronologies to reduce non-climatic noise at the site level yielded notable improvements in the coherence between modelled and actual growth. The resulting distinct and coherent patterns of significant relationships between the aggregated and simulated series further demonstrate the VSL model’s ability to skilfully capture the climatic signal contained in tree-ring series. Finally, we propose that the VSL model can be used as an observation operator in data assimilation approaches to reconstruct past climate. #-------------------- # Funding_Agency # Funding_Agency_Name: Swiss National Science Foundation # Grant: #-------------------- # Site_Information # Site_Name: Punkaharju Esker # Location: # Country: Finland # Northernmost_Latitude: 61.8 # Southernmost_Latitude: 61.8 # Easternmost_Longitude: 29.3 # Westernmost_Longitude: 29.3 # Elevation: nan m #-------------------- # Data_Collection # Collection_Name: europe_finl042B # Earliest_Year: 1820 # Most_Recent_Year: 2002 # Time_Unit: y_ad # Core_Length: # Notes: {"sensitivity":"moisture"}{"T1":"4.42444588584"}{"T2":"16.3023793111"}{"M1":"0.0223395834432"}{"M2":"0.493084646068"} #-------------------- # Species # Species_Name: Scots pine # Species_Code: PISY #-------------------- # Chronology: # # # #-------------------- # Variables # # Data variables follow that are preceded by ## in columns one and two. # Data line variables format: Variables list, one per line, shortname-tab-longname-tab-longname components (9 components: what, material, error, units, seasonality, archive, detail, method, C or N for Character or Numeric data) # ##age age, , ,years AD, , , , ,N ##trsgi tree ring standardized growth index, tree ring, ,percent relative to mean growth, , Tree Rings, , ,N # #-------------------- # Data: # Data lines follow (have no #) # Data line format - tab-delimited text, variable short name as header # Missing Values: nan # age trsgi 1820 0.825 1821 1.019 1822 1.01 1823 0.922 1824 0.997 1825 0.989 1826 0.801 1827 0.739 1828 0.96 1829 0.875 1830 0.98 1831 0.752 1832 0.828 1833 0.86 1834 1.025 1835 0.815 1836 1.012 1837 1.142 1838 1.124 1839 0.898 1840 1.292 1841 1.251 1842 1.205 1843 0.943 1844 1.149 1845 0.814 1846 0.894 1847 0.868 1848 1.071 1849 1.165 1850 1.004 1851 1.262 1852 0.934 1853 0.802 1854 1.005 1855 0.819 1856 1.007 1857 1.028 1858 0.797 1859 0.599 1860 0.998 1861 0.915 1862 0.999 1863 1.076 1864 1.056 1865 1.261 1866 1.243 1867 0.988 1868 1.132 1869 1.085 1870 1.188 1871 1.07 1872 1.057 1873 1.203 1874 1.122 1875 0.932 1876 0.846 1877 0.901 1878 0.966 1879 1.094 1880 0.992 1881 0.8 1882 1.023 1883 0.892 1884 0.993 1885 0.951 1886 0.971 1887 0.834 1888 0.882 1889 0.649 1890 1.085 1891 1.189 1892 1.186 1893 1.149 1894 1.174 1895 0.932 1896 0.885 1897 0.832 1898 1.007 1899 0.874 1900 0.878 1901 0.921 1902 0.834 1903 0.953 1904 1.071 1905 1.03 1906 1.054 1907 0.965 1908 0.784 1909 0.753 1910 0.796 1911 0.734 1912 0.794 1913 0.757 1914 0.818 1915 1.022 1916 0.788 1917 0.706 1918 0.802 1919 0.772 1920 0.922 1921 1.017 1922 1.197 1923 1.14 1924 1.403 1925 1.133 1926 0.732 1927 0.999 1928 0.834 1929 0.908 1930 0.951 1931 0.813 1932 1.099 1933 0.991 1934 1.366 1935 1.1 1936 0.988 1937 1.035 1938 1.073 1939 0.875 1940 0.576 1941 0.692 1942 0.582 1943 0.882 1944 1.009 1945 1.082 1946 1.206 1947 1.155 1948 1.097 1949 1.217 1950 1.267 1951 1.054 1952 1.04 1953 1.283 1954 1.394 1955 1.098 1956 0.847 1957 1.284 1958 1.173 1959 1.102 1960 0.913 1961 0.78 1962 0.877 1963 0.853 1964 0.831 1965 0.849 1966 0.845 1967 1.132 1968 0.935 1969 0.758 1970 0.899 1971 0.939 1972 0.811 1973 0.828 1974 1.055 1975 1.117 1976 1.266 1977 1.017 1978 1.174 1979 1.257 1980 1.076 1981 1.051 1982 1.057 1983 1.002 1984 0.85 1985 0.863 1986 1.083 1987 1.066 1988 1.199 1989 1.031 1990 1.172 1991 1.086 1992 0.652 1993 0.594 1994 0.828 1995 0.743 1996 0.804 1997 0.881 1998 0.77 1999 1.038 2000 1.418 2001 1.101 2002 0.887