# europe_brit020 - Glen Derry - Breitenmoser Tree Ring Chronology Data #----------------------------------------------------------------------- # World Data Center for Paleoclimatology, Boulder # and # NOAA Paleoclimatology Program #----------------------------------------------------------------------- # NOTE: Please cite Publication, and Online_Resource and date accessed when using these data. # If there is no publication information, please cite Investigators, Title, and Online_Resource and date accessed. # # # Online_Resource: # # Original_Source_URL: # # Description/Documentation lines begin with # # Data lines have no # # # Archive: Tree Rings #-------------------- # Contribution_Date # Date: 2016-01-07 #-------------------- # Title # Study_Name: europe_brit020 - Glen Derry - Breitenmoser Tree Ring Chronology Data #-------------------- # Investigators # Investigators: Breitenmoser, P.; Bronnimann, S.; Frank, D. #-------------------- # Description_and_Notes # Description: Data from Breitenmoser 2014 Journal of past Climate supplementary, see publication for ARSTAN standardization details #-------------------- # Publication # Authors: Breitenmoser, P.; Bronnimann, S.; Frank, D. # Published_Date_or_Year: 2014-03-11 # Published_Title: Forward modelling of tree-ring width and comparison with a global network of tree-ring chronologies # Journal_Name: Climate of the Past # Volume: 10 # Edition: # Issue: # Pages: 437-449 # DOI: 10.5194/cp-10-437-2014 # Online_Resource: www.clim-past.net/10/437/2014/ # Full_Citation: # Abstract: We investigate relationships between climate and tree-ring data on a global scale using the process-based Vaganov–Shashkin Lite (VSL) forward model of tree-ring width formation. The VSL model requires as inputs only latitude, monthly mean temperature, and monthly accumulated precipitation. Hence, this simple, process-based model enables ring-width simulation at any location where monthly climate records exist. In this study, we analyse the growth response of simulated tree rings to monthly climate conditions obtained from the CRU TS3.1 data set back to 1901. Our key aims are (a) to assess the VSL model performance by examining the relations between simulated and observed growth at 2287 globally distributed sites, (b) indentify optimal growth parameters found during the model calibration, and (c) to evaluate the potential of the VSL model as an observation operator for data-assimilation-based reconstructions of climate from tree-ring width. The assessment of the growth-onset threshold temperature of approximately 4–6 C for most sites and species using a Bayesian estimation approach complements other studies on the lower temperature limits where plant growth may be sustained. Our results suggest that the VSL model skilfully simulates site level treering series in response to climate forcing for a wide range of environmental conditions and species. Spatial aggregation of the tree-ring chronologies to reduce non-climatic noise at the site level yielded notable improvements in the coherence between modelled and actual growth. The resulting distinct and coherent patterns of significant relationships between the aggregated and simulated series further demonstrate the VSL model’s ability to skilfully capture the climatic signal contained in tree-ring series. Finally, we propose that the VSL model can be used as an observation operator in data assimilation approaches to reconstruct past climate. #-------------------- # Funding_Agency # Funding_Agency_Name: Swiss National Science Foundation # Grant: #-------------------- # Site_Information # Site_Name: Glen Derry # Location: # Country: United Kingdom # Northernmost_Latitude: 57.02 # Southernmost_Latitude: 57.02 # Easternmost_Longitude: -3.57 # Westernmost_Longitude: -3.57 # Elevation: 457 m #-------------------- # Data_Collection # Collection_Name: europe_brit020B # Earliest_Year: 1796 # Most_Recent_Year: 1978 # Time_Unit: y_ad # Core_Length: # Notes: {"sensitivity":"temperature"}{"T1":"4.42326950123"}{"T2":"18.4466067067"}{"M1":"0.0225844069458"}{"M2":"0.374493023836"} #-------------------- # Species # Species_Name: Scots pine # Species_Code: PISY #-------------------- # Chronology: # # # #-------------------- # Variables # # Data variables follow that are preceded by ## in columns one and two. # Data line variables format: Variables list, one per line, shortname-tab-longname-tab-longname components (9 components: what, material, error, units, seasonality, archive, detail, method, C or N for Character or Numeric data) # ##age age, , ,years AD, , , , ,N ##trsgi tree ring standardized growth index, tree ring, ,percent relative to mean growth, , Tree Rings, , ,N # #-------------------- # Data: # Data lines follow (have no #) # Data line format - tab-delimited text, variable short name as header # Missing Values: nan # age trsgi 1796 1.038 1797 0.934 1798 0.968 1799 0.906 1800 1.076 1801 1.033 1802 1.071 1803 1.333 1804 1.207 1805 1.153 1806 1.07 1807 1.026 1808 0.934 1809 1.04 1810 0.823 1811 0.915 1812 1.027 1813 1.114 1814 0.971 1815 0.968 1816 0.868 1817 1.024 1818 0.959 1819 1.237 1820 1.023 1821 0.944 1822 1.007 1823 0.926 1824 1.065 1825 1.064 1826 0.943 1827 1.214 1828 1.135 1829 1.039 1830 1.155 1831 1.161 1832 1.173 1833 0.957 1834 1.0 1835 0.888 1836 0.674 1837 0.732 1838 0.761 1839 0.735 1840 0.843 1841 0.886 1842 0.785 1843 0.918 1844 0.827 1845 0.836 1846 0.96 1847 0.994 1848 0.985 1849 0.896 1850 0.983 1851 0.99 1852 1.073 1853 0.798 1854 1.077 1855 0.803 1856 0.798 1857 0.959 1858 0.889 1859 0.99 1860 0.931 1861 1.044 1862 1.207 1863 1.291 1864 1.047 1865 0.89 1866 0.865 1867 0.818 1868 1.148 1869 0.932 1870 1.012 1871 1.016 1872 1.038 1873 0.968 1874 1.082 1875 1.159 1876 0.941 1877 0.773 1878 1.054 1879 0.8 1880 1.248 1881 0.841 1882 1.173 1883 1.033 1884 1.15 1885 0.906 1886 0.962 1887 1.045 1888 0.977 1889 0.987 1890 1.048 1891 0.982 1892 1.05 1893 1.381 1894 1.252 1895 1.004 1896 1.105 1897 1.178 1898 1.165 1899 0.957 1900 0.89 1901 1.021 1902 0.878 1903 1.17 1904 1.32 1905 1.261 1906 1.011 1907 0.801 1908 0.765 1909 0.798 1910 0.992 1911 1.075 1912 1.049 1913 0.989 1914 1.104 1915 0.949 1916 0.941 1917 0.867 1918 1.191 1919 1.078 1920 0.912 1921 1.043 1922 0.811 1923 0.999 1924 1.002 1925 1.169 1926 1.031 1927 0.659 1928 0.529 1929 0.864 1930 0.967 1931 0.874 1932 1.097 1933 1.086 1934 0.928 1935 1.243 1936 1.162 1937 1.107 1938 1.124 1939 1.13 1940 0.749 1941 0.912 1942 0.936 1943 1.176 1944 1.059 1945 1.022 1946 0.917 1947 1.018 1948 0.985 1949 1.272 1950 0.962 1951 1.038 1952 1.103 1953 0.974 1954 0.83 1955 1.051 1956 0.744 1957 0.816 1958 0.886 1959 0.904 1960 0.823 1961 0.683 1962 0.827 1963 0.929 1964 1.095 1965 0.963 1966 0.883 1967 0.962 1968 0.721 1969 0.669 1970 0.69 1971 0.937 1972 0.954 1973 0.872 1974 0.849 1975 0.994 1976 0.915 1977 0.78 1978 0.996