# Kharinei Lake Surface Air Temperature Reconstructions during the last 11 ka
#-----------------------------------------------------------------------            
#                World Data Service for Paleoclimatology, Boulder            
#                                  and            
#                     NOAA Paleoclimatology Program            
#             National Centers for Environmental Information (NCEI)            
#-----------------------------------------------------------------------            
# Template Version 3.0            
# Encoding: UTF-8            
# NOTE: Please cite Publication, and Online_Resource and date accessed when using these data.             
# If there is no publication information, please cite Investigators, Title, and Online_Resource and date accessed.
#
# Online_Resource: https://www.ncdc.noaa.gov/paleo/study/30820
#     Online_Resource_Description:  NOAA Landing Page
#
# Online_Resource: https://www.ncdc.noaa.gov/paleo/study/27330
#     Online_Resource_Description:  NOAA Landing Page for Temperature-12k Database
#
# Online_Resource: https://www.ncei.noaa.gov/pub/data/paleo/reconstructions/climate12k/temperature/version1.0.0/Temp12k_directory_NOAA_files/Kharinei.Jones.2011.txt
#     Online_Resource_Description:  NOAA location of the template
#
# Online_Resource: https://www.ncei.noaa.gov/pub/data/paleo/reconstructions/climate12k/temperature/version1.0.0/Temp12k_directory_LiPD_files/Kharinei.Jones.2011.lpd
#     Online_Resource_Description:  Linked Paleo Data (LiPD) formatted file containing metadata and data related to this file, for version 1.0.0 of this dataset.
#
# Original_Source_URL: 
# Description/Documentation lines begin with #
# Data lines have no #
#
# Data_Type: Climate Reconstructions
# Parameter_Keywords: air temperature
# Dataset_DOI: 
#
#------------------
# Contribution_Date
#     Date: 2020-04-15
#------------------
# File_Last_Modified_Date
#     Date: 2020-08-12
#------------------
# Title
#     Study_Name: Kharinei Lake Surface Air Temperature Reconstructions during the last 11 ka
#------------------
# Investigators
#     Investigators: Jones, Vivienne. J.; Solovieva, Nadia; Self, A. E.; McGowan, S.; Rosén, P.; Salonen, J. S.; Seppä, Heikki ; Väliranta, Minna; Parrott, E.; Brooks, S. J.
#------------------
# Description_Notes_and_Keywords
#     Description: This dataset was contributed as part of the Temperature-12k project (https://doi.org/10.25921/4RY2-G808). Data were contributed to the project from the original data generators, who are listed in the Investigator field of this template file. Additional notes regarding the use of these data in the Temperature-12k project can be found in the LiPD file listed as an Online_Resource of this template file.
#------------------
# Publication
#     Authors: Jones, V. J.; Solovieva, N.; Self, A. E.; McGowan, S.; Rosén, P.; Salonen, J. S.; Seppä, H.; Väliranta, M.; Parrott, E.; Brooks, S. J.
#     Published_Date_or_Year: 2011
#     Published_Title: The influence of Holocene tree-line advance and retreat on an arctic lake ecosystem: A multi-proxy study from Kharinei Lake, northeastern European Russia
#     Journal_Name: Journal of Paleolimnology
#     Volume: 46
#     Edition: 
#     Issue: 1
#     Pages: 123-137
#     Report: 
#     DOI: 10.1007/s10933-011-9528-7
#     Online_Resource: 
#     Full_Citation: 
#     Abstract: A consequence of predicted climate warming will be tree-line advance over large areas of the Russian tundra. Palaeolimnological techniques can be used to provide analogues of how such changes in tree-line advance and subsequent retreat affected lake ecosystems in the past. A Holocene sediment core taken from Kharinei Lake (Russia) was dated radiometrically and used for multi-proxy analyses with the aim of determining how climate and tree-line dynamics affected the productivity, community structure, carbon cycling and light regime in the lake. Pollen and macrofossil analyses were used to determine the dates of the arrival and retreat of birch and spruce forest. C:N ratios and percent loss-on-ignition were used to infer past changes in sediment organic matter. Visible-near-infrared spectroscopy and diatom analysis were used to infer past changes in lake-water carbon. Algal pigments and aquatic macrophytes were used to determine changes in lake productivity and light. Chironomids together with remains of the aquatic flora and fauna were used to provide information on past July temperature and continentality. Lake sedimentation was initiated shortly before 11,000 cal. years BP, when both chironomid- and pollen-inferred temperature reconstructions suggest higher summer temperatures than present, between 1 and 2°C warmer, and lake productivity was relatively high. A few trees were already present at this time. The spruce forest expanded at 8,000 cal. year BP remaining in the vicinity of the lake until 3,500 cal. year BP. This period coincided with a high concentration of organic material in the water column, and relatively high benthic productivity, as indicated by a high benthic: planktonic diatom ratio. After tree-line retreat, the optical transparency of the lake increased, and it became more open and exposed, and was thus subject to greater water-column mixing resulting in a higher abundance of diatom phytoplankton, especially heavily silicified Aulocoseira species. The colder climate resulted in a shorter ice-free period, the lake was less productive and there was a loss of aquatic macrophytes. Increased wind-induced mixing following forest retreat had a greater influence on the lake ecosystem than the effects of decreasing organic matter concentration and increased light penetration.
#------------------
# Publication 
#     Authors: Kaufman, D., N. McKay, C. Routson, M. Erb, B. Davis, O. Heiri, S. Jaccard, J. Tierney, C. Dätwyler, Y. Axford, T. Brussel, O. Cartapanis, B. Chase, A. Dawson, A. de Vernal, S. Engels, L. Jonkers, J. Marsicek, P. Moffa-Sánchez, C. Morrill, A. Orsi, K. Rehfeld, K. Saunders, P. S. Sommer, E. Thomas, M. Tonello, M. Tóth, R. Vachula, A. Andreev, S. Bertrand, B. Biskaborn, M. Bringué, S. Brooks, M. Caniupán, M. Chevalier, L. Cwynar, J. Emile-Geay, J. Fegyveresi, A. Feurdean, W. Finsinger, M-C. Fortin, L. Foster, M. Fox, K. Gajewski, M. Grosjean, S. Hausmann, M. Heinrichs, N. Holmes, B. Ilyashuk, E. Ilyashuk, S. Juggins, D. Khider, K. Koinig, P. Langdon, I. Larocque-Tobler, J. Li, A. Lotter, T. Luoto, A. Mackay, E. Magyari, S. Malevich, B. Mark, J. Massaferro, V. Montade, L. Nazarova, E. Novenko, P. Paril, E. Pearson, M. Peros, R. Pienitz, M. Plóciennik, D. Porinchu, A. Potito, A. Rees, S. Reinemann, S. Roberts, N. Rolland, S. Salonen, A. Self, H. Seppä, S. Shala, J-M. St-Jacques, B. Stenni, L. Syrykh, P. Tarrats, K. Taylor, V. van den Bos, G. Velle, E. Wahl, I. Walker, J. Wilmshurst, E. Zhang, S. Zhilich
#     Published_Date_or_Year: 2020-04-14
#     Published_Title: A global database of Holocene paleotemperature records
#     Journal_Name: Scientific Data
#     Volume: 7
#     Edition: 115
#     Issue: 
#     Pages:
#     Report_Number: 
#     DOI: 10.1038/s41597-020-0445-3 
#     Online_Resource: https://www.nature.com/articles/s41597-020-0445-3
#     Full_Citation: 
#     Abstract: A comprehensive database of paleoclimate records is needed to place recent warming into the longer-term context of natural climate variability. We present a global compilation of quality-controlled, published, temperature-sensitive proxy records extending back 12,000 years through the Holocene. Data were compiled from 679 sites where time series cover at least 4000 years, are resolved at sub-millennial scale (median spacing of 400 years or finer) and have at least one age control point every 3000 years, with cut-off values slackened in data-sparse regions. The data derive from lake sediment (51%), marine sediment (31%), peat (11%), glacier ice (3%), and other natural archives. The database contains 1319 records, including 157 from the Southern Hemisphere. The multi-proxy database comprises paleotemperature time series based on ecological assemblages, as well as biophysical and geochemical indicators that reflect mean annual or seasonal temperatures, as encoded in the database. This database can be used to reconstruct the spatiotemporal evolution of Holocene temperature at global to regional scales, and is publicly available in Linked Paleo Data (LiPD) format.
#------------------
# Funding_Agency
#     Funding_Agency_Name: 
#     Grant: 
#------------------
# Site_Information
#     Site_Name: Kharinei
#     Location: Europe>Eastern Europe>Russian Federation
#     Country: Russia
#     Northernmost_Latitude: 67.3628
#     Southernmost_Latitude: 67.3628
#     Easternmost_Longitude: 62.7507
#     Westernmost_Longitude: 62.7507
#     Elevation: 108
#------------------
# Data_Collection
#     Collection_Name: Kharinei.Jones.2011
#     Earliest_Year: 11502.69
#     Most_Recent_Year: -53.246
#     Time_Unit: cal yr BP
#     Core_Length: 
#     Notes: 
#------------------
# Species
#     Species_Name: 
#     Species_Code: 
#     Common_Name: 
#------------------
# Chronology_Information
#     Chronology:
# OriginalDateID	depth_top	depth_bottom	age_type	age	uncertainty_old	uncertainty_young	Include	material	
# nan	0.0	nan	Core top	-55.0	0.0	0.0	Y	cored in April 2007	
# nan	0.25	nan	Pb210-Lead	-53.0	-51.0	-55.0	Y	modelled from Pb-210 data	
# nan	0.75	nan	Pb210-Lead	-40.0	-37.0	-43.0	Y	modelled from Pb-210 data	
# nan	1.25	nan	Pb210-Lead	-13.0	-7.0	-19.0	Y	modelled from Pb-210 data	
# nan	1.75	nan	Pb210-Lead	4.0	14.0	-6.0	Y	modelled from Pb-210 data	
# nan	2.25	nan	Pb210-Lead	26.0	44.0	8.0	Y	modelled from Pb-210 data	
# nan	2.75	nan	Pb210-Lead	76.0	104.0	48.0	Y	modelled from Pb-210 data	
# SUERC-21513	20.0	21.0	age14C	2663.0	2700.0	2626.0	N	Bulk sediment	
# SUERC-21516	30.0	31.0	age14C	2256.0	2293.0	2219.0	N	Bulk sediment	
# SUERC-17505	40.0	41.0	age14C	2411.0	2448.0	2374.0	N	Bulk sediment	
# SUERC-21517	72.0	73.0	age14C	4640.0	4678.0	4602.0	N	Bulk sediment	
# SUERC-21518	100.0	101.0	age14C	3571.0	3611.0	3531.0	N	Bulk sediment	
# SUERC-17506	128.0	129.0	age14C	5555.0	5593.0	5517.0	N	Bulk sediment	
# SUERC-21519	152.0	153.0	age14C	6878.0	6917.0	6839.0	N	Bulk sediment	
# SUERC-21520	172.0	173.0	age14C	7039.0	7078.0	7000.0	N	Bulk sediment	
# SUERC-17509	200.0	201.0	age14C	7304.0	7341.0	7267.0	N	Bulk sediment	
# SUERC-21521	228.0	229.0	age14C	8661.0	8705.0	8617.0	N	Bulk sediment	
# SUERC-21522	254.0	255.0	age14C	10212.0	10257.0	10167.0	N	Bulk sediment	
# SUERC-17510	284.0	285.0	age14C	9738.0	9781.0	9695.0	N	Bulk sediment	
# SUERC-21523	300.0	301.0	age14C	10213.0	10258.0	10168.0	N	Bulk sediment	
# SUERC-21526	314.0	315.0	age14C	10610.0	10654.0	10566.0	N	Bulk sediment	
# Poz-34966	63.0	64.0	age14C	5080.0	5120.0	5040.0	N	Mixed terrestrial plant material	
# Poz-34208	99.0	100.0	age14C	3590.0	3630.0	3550.0	Y	Betula bark	
# Poz-34967	179.0	180.0	age14C	5460.0	5500.0	5420.0	Y	Mixed terrestrial plant material	
# Poz-34209	223.0	224.0	age14C	6250.0	6290.0	6210.0	Y	Picea needles	
# Poz-34968	139.0	240.0	age14C	6780.0	6830.0	6730.0	Y	Mixed terrestrial plant material	
# Poz-34210	289.0	290.0	age14C	9440.0	9490.0	9390.0	Y	Wood	
# Poz-34969	297.0	298.0	age14C	9200.0	9250.0	9150.0	Y	Mixed terrestrial plant material	
#------------------
# Variables        
#
# Data variables follow that are preceded by "##" in columns one and two.        
# Variables list, one per line, shortname-tab-longname components (9 components: what, material, error, units, seasonality, archive, detail, method, C or N for Character or Numeric data)
#
## depth	depth,,,centimeter,,insect;paleolimnology;climate reconstructions,,,N,top 2 samples at 0.5 cm intervals 
## age	age,,,calendar year before present,,insect;paleolimnology;climate reconstructions,,,N,ages modelled from radiocarbon and Pb-210 data
## temperature	surface air temperature,midge assemblage,,degree Celsius,Jul,insect;paleolimnology;climate reconstructions,,,N,Western Russian calibration dataset (Self et al. 2011); WAPLS
## uncertainty	surface air temperature,midge assemblage,unspecified error upper bound,degree Celsius,Jul,insect;paleolimnology;climate reconstructions,,,N,
## uncertainty-1	surface air temperature,midge assemblage,unspecified error lower bound,degree Celsius,Jul,insect;paleolimnology;climate reconstructions,,,N,
## reliable	notes,,,,,insect;paleolimnology;climate reconstructions,,,C,Data are reliable (Yes or No)
#
#------------------
# Data:        
# Data lines follow (have no #)        
# Data line format - tab-delimited text, variable short name as header
# Missing_Values: nan
#
depth	age	temperature	uncertainty	uncertainty-1	reliable	
0.0	-53.246	13.345	14.335272	12.355528	Y	
2.0	23.565	12.53	13.520727	11.539673	Y	
4.0	112.175	12.794	13.79446	11.79374	Y	
6.0	191.129	13.035	14.018021	12.051979	Y	
8.0	270.083	12.571	13.59565	11.54675	Y	
10.0	349.037	13.151	14.124888	12.177512	Y	
12.0	427.991	12.438	13.47078	11.40502	Y	
16.0	585.899	12.897	13.90606	11.88814	Y	
24.0	901.715	13.657	14.632726	12.682074	Y	
32.0	1217.531	13.281	14.236219	12.325981	Y	
40.0	1533.347	12.658	13.60532	11.71108	Y	
48.0	1849.163	12.582	13.550912	11.612488	Y	
52.0	2007.071	12.856	13.805106	11.907294	Y	
56.0	2164.979	13.028	13.990891	12.064909	Y	
64.0	2480.795	12.81	13.764916	11.855084	Y	
72.0	2796.611	12.91	13.863228	11.956172	Y	
80.0	3112.427	12.454	13.409897	11.498703	Y	
88.0	3428.243	12.697	13.652464	11.741536	Y	
96.0	3744.059	12.635	13.589117	11.680283	Y	
104.0	4005.54	12.724	13.699739	11.747661	Y	
114.0	4291.71	13.017	13.981515	12.051485	Y	
130.0	4749.582	13.94	14.909426	12.969774	Y	
144.0	5150.22	13.365	14.334164	12.395836	Y	
160.0	5608.092	12.53	13.487089	11.571911	Y	
176.0	6065.964	13.45	14.427341	12.471659	Y	
190.0	6430.725	13.421	14.377151	12.464449	Y	
208.0	6887.061	13.136	14.107142	12.163858	Y	
216.0	7089.877	14.063	15.010953	13.115247	Y	
224.0	7301.788	13.148	14.109191	12.187209	Y	
232.0	7577.492	14.354	15.304289	13.404111	Y	
240.0	7865.421	13.308	14.268966	12.347234	Y	
248.0	8238.949	15.236	16.205701	14.265899	Y	
256.0	8612.477	15.359	16.314973	14.403427	Y	
264.0	8986.005	14.967	15.915078	14.019122	Y	
288.0	10106.589	14.085	15.067997	13.101603	Y	
296.0	10503.129	16.001	16.957437	15.044563	Y	
304.0	10902.954	15.673	16.629219	14.716381	Y	
312.0	11302.778	16.541	17.504757	15.577243	Y	
316.0	11502.69	15.378	16.349307	14.405893	Y