subroutine tracer (joff, js, je, is, ie) #if defined O_mom !======================================================================= ! compute tracers at "tau+1" for rows js through je in the MW. ! input: ! joff = offset relating "j" in the MW to latitude "jrow" ! js = starting row in the MW ! je = ending row in the MW ! is = starting longitude index in the MW ! ie = ending longitude index in the MW !======================================================================= implicit none character(120) :: fname, new_file_name integer istrt, iend, i, k, j, ip, kr, jq, n, jp, jrow, iou, js integer je, limit, joff, is, ie, kmx, m, kb, idiag, index integer it(10), iu(10), ib(10), ic(10), nfnpzd, mfnpzd, mxfnpzd integer id_time, id_xt, id_yt, id_zt,fe_jlo,fe_m,fe_k,fe_n logical inqvardef, exists parameter (fe_n = 14) real time real t_i, t_j, dz_t2r, dz_tr, dz_wtr, dx_t2r, dx_tr, dy_t2r real dy_tr, adv_tx, adv_ty, adv_tz, adv_txiso, adv_tyiso real adv_tziso, diff_tx, diff_ty, diff_tz, zmax, cont, drho real drhom1, wt, ahbi_cstr, ahbi_csu_dyur, gamma, fy, fyz real felimit real fe_dy, fe_conc, fe_x(fe_n), fe_y(fe_n), bctz, felimit_D real expofe, impofe, feorgads, remife, thetamax, deffe, fecol real thetachl, chl, chl_D, feprime, fesed, bfe, sgb include "size.h" include "param.h" include "pconst.h" include "stdunits.h" include "accel.h" include "coord.h" include "cregin.h" include "csbc.h" include "emode.h" include "grdvar.h" include "hmixc.h" include "levind.h" include "mw.h" include "scalar.h" include "switch.h" include "timeavgs.h" include "tmngr.h" include "vmixc.h" # if defined O_save_convection || defined O_carbon_14 include "diaga.h" real rrc14std # endif # if defined O_ice # if defined O_ice_cpts include "cpts.h" # endif include "ice.h" # endif # if defined O_npzd real t_in(km), po4_in(km) # if defined O_npzd_o2 real o2_in(km) # endif # if defined O_carbon_13 real s_in(km), dic_in(km), alk_in(km), co2_in, dic13_in(km) # endif # if defined O_npzd_nitrogen real no3_in(km), sgb_in(km) # if defined O_npzd_nitrogen_15 real din15_in(km) # endif # endif # if defined O_npzd_fe_limitation real felimit_in(km), felimit_D_in(km) # endif real expo, tnpzd(km,ntnpzd) # if defined O_embm include "atm.h" # if defined O_carbon_13 include "cembm.h" # endif # endif # endif # if defined O_npzd || O_carbon_14 include "npzd.h" # endif # if defined O_carbon_fnpzd include "calendar.h" # endif parameter (istrt=2, iend=imt-1) real twodt(km) # if defined O_plume real work(imt,km,jsmw:jemw) # endif # if defined O_npzd || defined O_carbon_14 real ai, hi, hs, rctheta, dayfrac, swr, declin real src(imt,km,jsmw:jemw,nsrc) # endif # if defined O_carbon_fnpzd real tmpijk(imtm2,jmtm2,km), tmpi(imtm2), tmpj(jmtm2) real, allocatable :: fnpzd(:,:,:,:) save fnpzd, nfnpzd, mfnpzd, mxfnpzd # endif # if defined O_isopycmix include "isopyc.h" # endif include "fdift.h" # if defined O_carbon_fnpzd !----------------------------------------------------------------------- ! create file for writing npzd 3d fluxes of carbon and alkalinity !----------------------------------------------------------------------- if (.not. allocated (fnpzd)) then allocate ( fnpzd(imt,jmt,km,2) ) fnpzd(:,:,:,:) = 0. ! initialize time record counter mfnpzd = 0 ! initialize records written counter nfnpzd = 0 ! set the repeating time interval to one year mxfnpzd = nint(daylen*yrlen/dtts) fname = new_file_name ("O_fnpzd.nc") inquire (file=trim(fname), exist=exists) if (exists) then ! limit time interval to what exists call openfile (fname, iou) call getdimlen ('time', iou, nfnpzd) mxfnpzd = min(mxfnpzd, nfnpzd) # if defined O_carbon if (inqvardef('O_fnpzd1', iou)) nfnpzd = mxfnpzd # endif # if defined O_npzd_alk if (inqvardef('O_fnpzd2', iou)) nfnpzd = mxfnpzd # endif else ! define file if not there call openfile (fname, iou) call redef (iou) call defdim ('time', iou, 0, id_time) call defdim ('longitude', iou, imtm2, id_xt) call defdim ('latitude', iou, jmtm2, id_yt) call defdim ('depth', iou, km, id_zt) it(1) = id_time call defvar ('time', iou, 1, it, c0, c0, 'T', 'D' &, 'time', 'time', 'years since 0-1-1') call putatttext (iou, 'time', 'calendar', calendar) it(1) = id_xt call defvar ('longitude', iou, 1, it, c0, c0, 'X', 'D' &, 'longitude', 'longitude', 'degrees') it(1) = id_yt call defvar ('latitude', iou, 1, it, c0, c0, 'Y', 'D' &, 'latitude', 'latitude', 'degrees') it(1) = id_zt call defvar ('depth', iou, 1, it, c0, c0, 'Z', 'D' &, 'depth', 'depth', 'm') it(1) = id_xt it(2) = id_yt it(3) = id_zt it(4) = id_time # if defined O_carbon call defvar ('O_fnpzd1', iou, 4, it, c0, c0, ' ', 'D' &, ' ', ' ', ' ') # endif # if defined O_npzd_alk call defvar ('O_fnpzd2', iou, 4, it, c0, c0, ' ', 'D' &, ' ', ' ', ' ') # endif call enddef (iou) ib(:) = 1 ic(:) = imtm2 tmpi(1:imtm2) = xt(2:imtm1) call putvara ('longitude', iou, imtm2, ib, ic, xt, c1, c0) ib(:) = 1 ic(:) = jmtm2 tmpj(1:jmtm2) = yt(2:jmtm1) call putvara ('latitude', iou, jmtm2, ib, ic, yt, c1, c0) ib(:) = 1 ic(:) = km call putvara ('depth', iou, km, ib, ic, zt, c1, c0) endif endif # endif !----------------------------------------------------------------------- ! bail out if starting row exceeds ending row !----------------------------------------------------------------------- if (js .gt. je) return !----------------------------------------------------------------------- ! limit the longitude indices based on those from the argument list ! Note: this is currently bypassed. istrt and iend are set as ! parameters to optimize performance !----------------------------------------------------------------------- ! istrt = max(2,is) ! iend = min(imt-1,ie) !----------------------------------------------------------------------- ! build coefficients to minimize advection and diffusion computation !----------------------------------------------------------------------- # if defined O_fourth_order_tracer_advection || defined O_fct || defined O_quicker || defined O_pressure_gradient_average || defined O_biharmonic || defined O_isopycmix limit = min(je+1+joff,jmt) - joff do j=js,limit # else do j=js,je # endif jrow = j + joff do i=istrt-1,iend cstdxtr(i,j) = cstr(jrow)*dxtr(i) cstdxt2r(i,j) = cstr(jrow)*dxtr(i)*p5 cstdxur(i,j) = cstr(jrow)*dxur(i) # if defined O_consthmix && !defined O_bryan_lewis_horizontal && !defined O_biharmonic ah_cstdxur(i,j) = diff_cet*cstr(jrow)*dxur(i) # endif enddo enddo # if defined O_plume !----------------------------------------------------------------------- ! find depth of penetration for the llnl simple plume model !----------------------------------------------------------------------- ! set parameters zmax = 160.0e2 ! use constant depth penetration (if cont=0) ! cont = 0.0 ! use rho contrast for penetration (if cont>0) cont = 0.4e-3 ! 0.4 kg/m3 = 0.4e-3g/cm3 do j=js,je jrow = j + joff do i=is,ie subz(i,jrow) = zmax enddo if (cont .gt. c0) then call state_ref (t(1,1,1,1,tau), t(1,1,1,2,tau) &, work(1,1,jsmw), j, j, 1, imt, 1) do i=is,ie kmx = kmt(i,jrow) subz(i,jrow) = zw(1) do k=2,kmx drho = work(i,k,j) - work(i,1,j) drhom1 = work(i,k-1,j) - work(i,1,j) if (drho .ge. cont .and. drhom1 .lt. cont) & subz(i,jrow) = zt(k-1) + (zt(k) - zt(k-1)) & *(cont - drhom1)/(drho - drhom1) enddo if (drho .le. cont) subz(i,jrow) = zw(kmx) enddo endif !----------------------------------------------------------------------- ! calculate "3d stf" multiplier for the llnl simple plume model !----------------------------------------------------------------------- do i=is,ie if (kmt(i,jrow) .gt. 0) then subz(i,jrow) = max(min(subz(i,jrow),zw(kmt(i,jrow))),zw(1)) work(i,1,j) = c1/subz(i,jrow) do k=2,km wt = min(max(c0,(subz(i,jrow) - zw(k-1))),dzt(k))*dztr(k) work(i,k,j) = wt*work(i,1,j) enddo else do k=1,km work(i,k,j) = c0 enddo endif enddo enddo # endif # if defined O_npzd !----------------------------------------------------------------------- ! ocean biogeochemistry and isotopes !----------------------------------------------------------------------- declin = sin((mod(relyr,1.) - 0.22)*2.*pi)*0.4 ! declination nbio = c2dtts/dtnpzd dtbio = c2dtts/nbio rdtts = 1./c2dtts rnbio = 1./nbio do j=js,je jrow = j + joff do i=is,ie if (kmt(i,jrow) .gt. 0) then # if defined O_ice # if defined O_ice_cpts ai = 0. hi = 0. hs = 0. do n=1,ncat ai = ai + A(i,jrow,2,n) hi = hi + heff(i,jrow,2,n) hs = hs + hseff(i,jrow,2,n) enddo # else ai = aice(i,jrow,2) hi = hice(i,jrow,2) hs = hsno(i,jrow,2) # endif # else ai = 0. hi = 0. hs = 0. # endif ! calculate day fraction and incoming solar ! angle of incidence = lat - declin, refraction index = 1.33 rctheta = max(-1.5, min(1.5, tlat(i,jrow)/radian - declin)) rctheta = kw/sqrt(1. - (1. - cos(rctheta)**2.)/1.33**2.) dayfrac = min( 1., -tan(tlat(i,jrow)/radian)*tan(declin)) dayfrac = max(1e-12, acos(max(-1., dayfrac))/pi) # if defined O_embm swr = tap*dnswr(i,jrow)*1e-3*(1. + ai*(exp(-ki*(hi + hs)) & - 1.)) # else swr = tap*200. # endif ! set prognostic variables tnpzd(:,1) = t(i,:,j,ipo4,taum1) tnpzd(:,2) = t(i,:,j,idop,taum1) tnpzd(:,3) = t(i,:,j,iphyt,taum1) tnpzd(:,4) = t(i,:,j,izoop,taum1) tnpzd(:,5) = t(i,:,j,idetr,taum1) # if defined O_npzd_nitrogen tnpzd(:,6) = t(i,:,j,idic,taum1) tnpzd(:,7) = t(i,:,j,ino3,taum1) tnpzd(:,8) = t(i,:,j,idon,taum1) tnpzd(:,9) = t(i,:,j,idiaz,taum1) # if defined O_npzd_nitrogen_15 tnpzd(:,10) = t(i,:,j,idin15,taum1) tnpzd(:,11) = t(i,:,j,idon15,taum1) tnpzd(:,12) = t(i,:,j,iphytn15,taum1) tnpzd(:,13) = t(i,:,j,izoopn15,taum1) tnpzd(:,14) = t(i,:,j,idetrn15,taum1) tnpzd(:,15) = t(i,:,j,idiazn15,taum1) # endif # endif # if defined O_npzd_iron tnpzd(:,22) = t(i,:,j,idfe,taum1) tnpzd(:,23) = t(i,:,j,idetrfe,taum1) # endif # if defined O_carbon_13 tnpzd(:,16) = t(i,:,j,idic13,taum1) tnpzd(:,17) = t(i,:,j,idoc13,taum1) tnpzd(:,18) = t(i,:,j,iphytc13,taum1) tnpzd(:,19) = t(i,:,j,izoopc13,taum1) tnpzd(:,20) = t(i,:,j,idetrc13,taum1) # if defined O_npzd_nitrogen tnpzd(:,21) = t(i,:,j,idiazc13,taum1) # endif # endif ! set other input variables t_in(:) = t(i,:,j,itemp,taum1) !degree Celsius po4_in(:) = t(i,:,j,ipo4,taum1) o2_in(:) = t(i,:,j,io2,taum1)*1000. ! uM # if defined O_carbon_13 s_in(:) = 1.e3*t(i,:,j,isalt,taum1) + 35.0 dic_in(:) = t(i,:,j,idic,taum1) !mol/m^3 alk_in(:) = t(i,:,j,ialk,taum1) !eq/m^3 # if defined O_carbon_co2_2d co2_in = at(i,j,2,ico2) # else co2_in = co2ccn # endif dic13_in(:) = tnpzd(:,16) !mol/m^3 # endif # if defined O_npzd_nitrogen no3_in(:) = tnpzd(:,7) # if defined O_npzd_nitrogen_15 din15_in(:) = tnpzd(:,10) # endif sgb_in(:) = sg_bathy(i,j,:) # endif # if defined O_npzd_fe_limitation do k=1,kmt(i,jrow) call fe_limit(i,j,k,felimit_in(k),felimit_D_in(k)) enddo # endif ! end input call mobi (kmt(i,jrow), c2dtts, rctheta, dayfrac, swr, tnpzd &, t_in, po4_in # if defined O_npzd_o2 &, o2_in # endif # if defined O_carbon_13 &, s_in, dic_in, alk_in, co2_in, dic13_in # endif # if defined O_npzd_nitrogen &, no3_in, sgb_in # if defined O_npzd_nitrogen_15 &, din15_in # endif # endif # if defined O_npzd_fe_limitation &, felimit_in, felimit_D_in # endif # if defined O_sed &, sedcorgflx, sedcalflx) # endif &, src(i,:,j,:)) # if defined O_npzd_iron !Add Fe from dust: src(i,1,j,isdfe) = src(i,1,j,isdfe) + ! comes in mol/m2/s gets converted to mmol/m3/s & sbc(i,j,idfeadep)*1000./(dzt(1)/100.) !dzt is in cm !Add hydrothermal Fe: do k=1,kmt(i,j) src(i,k,j,isdfe) = src(i,k,j,isdfe) + & fe_hydr(i,j,k) enddo # endif # if defined O_sed if (addflxo .and. eots) then sbc(i,jrow,irorg) = sbc(i,jrow,irorg) + sedcorgflx sbc(i,jrow,ircal) = sbc(i,jrow,ircal) + sedcalflx endif # endif # if defined O_time_averages && defined O_save_npzd !----------------------------------------------------------------------- ! accumulate time averages !----------------------------------------------------------------------- if (timavgperts .and. .not. euler2) then expo = rprca ta_rprocal(i,jrow) = ta_rprocal(i,jrow) + rprca do k = 1, kmt(i,jrow) ta_rnpp(i,k,jrow) = ta_rnpp(i,k,jrow) + rnpp(k) ta_rnpp_dop(i,k,jrow) = ta_rnpp_dop(i,k,jrow) & + rnpp_dop(k) ta_rgraz(i,k,jrow) = ta_rgraz(i,k,jrow) + rgraz(k) ta_rgraz_Z(i,k,jrow) = ta_rgraz_Z(i,k,jrow) + rgraz_Z(k) ta_rgraz_Det(i,k,jrow) = ta_rgraz_Det(i,k,jrow) & + rgraz_Det(k) ta_rmorp(i,k,jrow) = ta_rmorp(i,k,jrow) + rmorp(k) ta_rmorpt(i,k,jrow)= ta_rmorpt(i,k,jrow) + rmorpt(k) ta_rmorz(i,k,jrow) = ta_rmorz(i,k,jrow) + rmorz(k) ta_rexcr(i,k,jrow) = ta_rexcr(i,k,jrow) + rexcr(k) # if defined O_npzd_nitrogen ta_rnpp_D(i,k,jrow) = ta_rnpp_D(i,k,jrow) + rnpp_D(k) ta_rnpp_D_dop(i,k,jrow) = ta_rnpp_D_dop(i,k,jrow) & + rnpp_D_dop(k) ta_rgraz_D(i,k,jrow) = ta_rgraz_D(i,k,jrow) + rgraz_D(k) ta_rmorp_D(i,k,jrow) = ta_rmorp_D(i,k,jrow) + rmorp_D(k) ta_rmorpt_D(i,k,jrow) = ta_rmorpt_D(i,k,jrow) & + rmorpt_D(k) ta_rnfix(i,k,jrow) = ta_rnfix(i,k,jrow) + rnfix(k) ta_rbdeni(i,k,jrow) = ta_rbdeni(i,k,jrow) + rbdeni(k) # endif # if defined O_npzd_iron # if defined O_npzd_iron_diagnostics ta_rfeorgads(i,k,jrow) = ta_rfeorgads(i,k,jrow) & + rfeorgads(k) ta_rdeffe(i,k,jrow) = ta_rdeffe(i,k,jrow) & + rdeffe(k) ta_rfeprime(i,k,jrow) = ta_rfeprime(i,k,jrow) & + rfeprime(k) ta_rfesed(i,k,jrow) = ta_rfesed(i,k,jrow) & + rfesed(k) ta_rbfe(i,k,jrow) = ta_rbfe(i,k,jrow) & + rbfe(k) ta_rfecol(i,k,jrow) = ta_rfecol(i,k,jrow) & + rfecol(k) # endif # endif # if defined O_npzd_extra_diagnostics ta_ravej(i,k,jrow) = ta_ravej(i,k,jrow) + ravej(k) ta_ravej_D(i,k,jrow) = ta_ravej_D(i,k,jrow) + ravej_D(k) ta_rgmax(i,k,jrow) = ta_rgmax(i,k,jrow) + rgmax(k) ta_rno3P(i,k,jrow) = ta_rno3P(i,k,jrow) + rno3P(k) ta_rpo4P(i,k,jrow) = ta_rpo4P(i,k,jrow) + rpo4P(k) ta_rpo4_D(i,k,jrow) = ta_rpo4_D(i,k,jrow) + rpo4_D(k) # endif expo = expo*dztr(k) ta_rremi(i,k,jrow) = ta_rremi(i,k,jrow) + rremi(k) ta_rexpo(i,k,jrow) = ta_rexpo(i,k,jrow) + rexpo(k) expo = expo - rprca*rcak(k) ta_rexpocal(i,k,jrow) = ta_rexpocal(i,k,jrow) + expo expo = expo*dzt(k) # if defined O_npzd_nitrogen && defined O_npzd_o2 ta_rwcdeni(i,k,jrow) = ta_rwcdeni(i,k,jrow) & + rwcdeni(k) # endif # if defined O_npzd_iron ta_rremife(i,k,jrow) = ta_rremife(i,k,jrow) & + rremife(k) ta_rexpofe(i,k,jrow) = ta_rexpofe(i,k,jrow) & + rexpofe(k) # endif ! enddo endif # endif endif enddo enddo # endif # if defined O_carbon_fnpzd !----------------------------------------------------------------------- ! option to write and read fixed biological fluxes for carbon and ! alkalinity. code assumes that restarts line up with the first ! record. the repeating time period and restarts should probably ! line up with the start of the year. !----------------------------------------------------------------------- do j=js,je jrow = j + joff ! adjust counters and read fluxes, if first row of slab if (jrow .eq. 2) then mfnpzd = mfnpzd + 1 if (mfnpzd .gt. mxfnpzd) mfnpzd = 1 if (nfnpzd .le. mxfnpzd) nfnpzd = nfnpzd + 1 ! read fluxes, if enough records written if (nfnpzd .gt. mxfnpzd) then fname = new_file_name ("O_fnpzd.nc") inquire (file=trim(fname), exist=exists) if (exists) then ib(:) = 1 ic(:) = 1 ic(1) = imtm2 ic(2) = jmtm2 ic(3) = km ib(4) = mfnpzd print*, "Reading fnpzd from: ", trim(fname), & " record:", mfnpzd call openfile (fname, iou) # if defined O_carbon call getvara ('O_fnpzd1', iou, imtm2*jmtm2*km, ib, ic &, tmpijk, c1, c0) fnpzd(2:imtm1,2:jmtm1,1:km,1)=tmpijk(1:imtm2,1:jmtm2,1:km) # endif # if defined O_npzd_alk call getvara ('O_fnpzd2', iou, imtm2*jmtm2*km, ib, ic &, tmpijk, c1, c0) fnpzd(2:imtm1,2:jmtm1,1:km,2)=tmpijk(1:imtm2,1:jmtm2,1:km) # endif endif endif endif if (nfnpzd .le. mxfnpzd) then ! store fluxes, if enough records written do i=is,ie do k=1,km # if defined O_carbon fnpzd(i,jrow,k,1) = src(i,k,j,isdic) # endif # if defined O_npzd_alk fnpzd(i,jrow,k,2) = src(i,k,j,isalk) # endif enddo enddo ! write fluxes, if last row of slab if (jrow .eq. jmt-1) then fname = new_file_name ("O_fnpzd.nc") call openfile (fname, iou) print*, "Writing fnpzd to: ", trim(fname), & " record:", mfnpzd ib(:) = 1 ic(:) = 1 ic(1) = imtm2 ic(2) = jmtm2 ic(3) = km ib(4) = mfnpzd time = relyr call putvars ('time', iou, mfnpzd, time, c1, c0) # if defined O_carbon tmpijk(1:imtm2,1:jmtm2,1:km) = fnpzd(2:imtm1,2:jmtm1,1:km,1) call putvara ('O_fnpzd1', iou, imtm2*jmtm2*km, ib, ic &, tmpijk, c1, c0) # endif # if defined O_npzd_alk tmpijk(1:imtm2,1:jmtm2,1:km) = fnpzd(2:imtm1,2:jmtm1,1:km,2) call putvara ('O_fnpzd2', iou, imtm2*jmtm2*km, ib, ic &, tmpijk, c1, c0) # endif endif else ! set fluxes to source terms do i=is,ie do k=1,km # if defined O_carbon src(i,k,j,isdic) = fnpzd(i,jrow,k,1) # endif # if defined O_npzd_alk src(i,k,j,isalk) = fnpzd(i,jrow,k,2) # endif enddo enddo endif enddo # endif # if defined O_carbon && defined O_carbon_14 !----------------------------------------------------------------------- ! set source for c14 !----------------------------------------------------------------------- do j=js,je jrow = j + joff do i=is,ie if (kmt(i,jrow) .gt. 0) then do k=1,kmt(i,jrow) # if defined O_npzd src(i,k,j,isc14) = src(i,k,j,isdic)*rc14std & - 3.836e-12*t(i,k,j,ic14,taum1) # else src(i,k,j,isc14) = - 3.836e-12*t(i,k,j,ic14,taum1) # endif enddo endif enddo enddo # endif # if defined O_sed && !defined O_sed_uncoupled !----------------------------------------------------------------------- ! set source terms from sediment model !----------------------------------------------------------------------- do j=js,je jrow = j + joff do i=is,ie if (kmt(i,jrow) .gt. 0) then k = kmt(i,jrow) # if defined O_carbon && defined O_npzd src(i,k,j,isdic) = src(i,k,j,isdic) + sbc(i,j,ibdicfx) # if defined O_global_sums if (addflxo .and. eots) dtoic = dtoic - sbc(i,j,ibdicfx) & *c2dtts*dtxcel(k)*dxt(i)*dyt(jrow)*cst(jrow)*dzt(k) # endif # endif # if defined O_npzd_alk src(i,k,j,isalk) = src(i,k,j,isalk) + sbc(i,j,ibalkfx) # endif endif enddo enddo # endif !----------------------------------------------------------------------- ! solve for one tracer at a time ! n = 1 => temperature ! n = 2 => salinity ! n > 2 => other tracers (if applicable) !----------------------------------------------------------------------- do n=1,nt !----------------------------------------------------------------------- ! calculate advective tracer flux !----------------------------------------------------------------------- call adv_flux (joff, js, je, is, ie, n) !----------------------------------------------------------------------- ! calculate diffusive flux across eastern and northern faces ! of "T" cells due to various parameterizations for diffusion. !----------------------------------------------------------------------- # if defined O_consthmix # if !defined O_biharmonic || defined O_bryan_lewis_horizontal ! diffusive flux on eastern face of "T" cells do j=js,je do k=1,km do i=istrt-1,iend diff_fe(i,k,j) = # if defined O_bryan_lewis_horizontal & diff_cet(k)*cstdxur(i,j)* # else & ah_cstdxur(i,j)* # endif & (t(i+1,k,j,n,taum1) - t(i,k,j,n,taum1)) enddo enddo enddo # if defined O_isopycmix ! diffusive flux on northern face of "T" cells ! (background for isopycnal mixing) do j=js-1,je jrow = j + joff do k=1,km do i=istrt,iend diff_fn(i,k,j) = # if defined O_bryan_lewis_horizontal & diff_cnt(k)* # else & diff_cnt* # endif & csu_dyur(jrow)*(t(i,k,j+1,n,taum1) - t(i,k,j,n,taum1)) enddo enddo enddo # else ! diffusive flux on northern face of "T" cells is not calculated. ! instead, it is incorporated into DIFF_Ty for performance issues. # endif # else !----------------------------------------------------------------------- ! diffusive flux across eastern face of "T" cell ! diffusive flux across northern face of "T" cell !----------------------------------------------------------------------- m = 2 + n do j=js,je jrow = j + joff ahbi_cstr = diff_cet*cstr(jrow) do k=1,km do i=istrt-1,iend diff_fe(i,k,j) = ahbi_cstr*dxur(i)* & (del2(i+1,k,j,m)-del2(i,k,j,m)) enddo enddo enddo do j=js-1,je jrow = j + joff ahbi_csu_dyur = diff_cnt*csu(jrow)*dyur(jrow) do k=1,km do i=istrt,iend diff_fn(i,k,j) = ahbi_csu_dyur* & (del2(i,k,j+1,m) - del2(i,k,j,m)) enddo enddo enddo # endif # else # if defined O_smagnlmix ! diffusive flux on eastern and northern faces of "T" cells do j=js,je do k=1,km do i=istrt-1,iend diff_fe(i,k,j) = diff_cet(i,k,j)*cstdxur(i,j)* & (t(i+1,k,j,n,taum1) - t(i,k,j,n,taum1)) enddo enddo enddo do j=js-1,je jrow = j + joff do k=1,km do i=istrt,iend diff_fn(i,k,j) = diff_cnt(i,k,j)*csu_dyur(jrow)* & (t(i,k,j+1,n,taum1) - t(i,k,j,n,taum1)) enddo enddo enddo # endif # endif !----------------------------------------------------------------------- ! calculate diffusive flux across bottom face of "T" cells !----------------------------------------------------------------------- do j=js,je do k=1,km-1 do i=istrt,iend diff_fb(i,k,j) = diff_cbt(i,k,j)*dzwr(k)* & (t(i,k,j,n,taum1) - t(i,k+1,j,n,taum1)) enddo enddo enddo # if defined O_isopycmix !----------------------------------------------------------------------- ! compute isopycnal diffusive flux through east, north, ! and bottom faces of T cells. !----------------------------------------------------------------------- call isoflux (joff, js, je, is, ie, n) # endif !----------------------------------------------------------------------- ! set surface and bottom vert b.c. on "T" cells for diffusion ! and advection. for isopycnal diffusion, set adiabatic boundary ! conditions. ! note: the b.c. at adv_fb(i,k=bottom,j) is set by the above code. ! However, it is not set when k=km so it is set below. ! adv_fb(i,km,j) is always zero (to within roundoff). !----------------------------------------------------------------------- do j=js,je jrow = j + joff do i=istrt,iend kb = kmt(i,jrow) # if defined O_replacst diff_fb(i,0,j) = c0 # else diff_fb(i,0,j) = stf(i,j,n) # endif diff_fb(i,kb,j) = btf(i,j,n) adv_fb(i,0,j) = adv_vbt(i,0,j)*(t(i,1,j,n,tau) + & t(i,1,j,n,tau)) adv_fb(i,km,j) = adv_vbt(i,km,j)*t(i,km,j,n,tau) enddo enddo # if defined O_source_term || defined O_npzd || defined O_carbon_14 !----------------------------------------------------------------------- ! set source term for "T" cells !----------------------------------------------------------------------- source(:,:,:) = c0 # if defined O_npzd || defined O_carbon_14 if (itrc(n) .ne. 0) then do j=js,je do k=1,km do i=istrt,iend source(i,k,j) = src(i,k,j,itrc(n)) enddo enddo enddo endif # endif # if defined O_shortwave !----------------------------------------------------------------------- ! incorporate short wave penetration into source !----------------------------------------------------------------------- if (n .eq. 1) then call swflux0 (joff, js, je, istrt, iend, source) endif # endif # endif !----------------------------------------------------------------------- ! solve for "tau+1" tracer using statement functions to represent ! each component of the calculation !----------------------------------------------------------------------- ! 1st: solve using all components which are treated explicitly do j=js,je jrow = j + joff do k=1,km twodt(k) = c2dtts*dtxcel(k) do i=istrt,iend t(i,k,j,n,taup1) = t(i,k,j,n,taum1) + twodt(k)*( & DIFF_Tx(i,k,j) + DIFF_Ty(i,k,j,jrow,n) + DIFF_Tz(i,k,j) & - ADV_Tx(i,k,j) - ADV_Ty(i,k,j,jrow,n) - ADV_Tz(i,k,j) # if defined O_isopycmix && defined O_gent_mcwilliams && !defined O_fct && !defined O_quicker & - ADV_Txiso(i,k,j,n) - ADV_Tyiso(i,k,j,jrow,n) & - ADV_Tziso(i,k,j) # endif # if defined O_source_term || defined O_npzd || defined O_carbon_14 & + source(i,k,j) # endif # if defined O_plume & + work(i,k,j)*subflux(i,jrow,n) # endif & )*tmask(i,k,j) enddo enddo enddo # if defined O_implicitvmix || defined O_isopycmix || defined O_redi_diffusion ! 2nd: add in portion of vertical diffusion handled implicitly call ivdift (joff, js, je, istrt, iend, n, twodt) # endif do j=js,je call setbcx (t(1,1,j,n,taup1), imt, km) enddo !----------------------------------------------------------------------- ! construct diagnostics associated with tracer "n" !----------------------------------------------------------------------- call diagt1 (joff, js, je, istrt, iend, n, twodt) !----------------------------------------------------------------------- ! end of tracer component "n" loop !----------------------------------------------------------------------- enddo # if defined O_replacst gamma = zw(1)/twodt(1) do j=js,je jrow = j + joff do i=istrt,iend stf(i,j,1) = gamma*(sbc(i,jrow,isst) - t(i,1,j,1,taup1)) stf(i,j,2) = gamma*(sbc(i,jrow,isss) - t(i,1,j,2,taup1)) t(i,1,j,1,taup1) = sbc(i,jrow,isst) t(i,1,j,2,taup1) = sbc(i,jrow,isss) enddo enddo # endif # if defined O_convect_brine !----------------------------------------------------------------------- ! explicit convection: adjust column if gravitationally unstable ! convect brine rejected under all ice categories !----------------------------------------------------------------------- call convect_brine (joff, js, je, is, ie) # else # if !defined O_implicitvmix || defined O_isopycmix !----------------------------------------------------------------------- ! explicit convection: adjust column if gravitationally unstable !----------------------------------------------------------------------- # if defined O_fullconvect call convct2 (t(1,1,1,1,taup1), joff, js, je, is, ie, kmt) do j=js,je do n=1,nt call setbcx (t(1,1,j,n,taup1), imt, km) enddo enddo # else call convct (t(1,1,1,1,taup1), ncon, joff, js, je, istrt, iend &, kmt) # endif # endif # endif # if defined O_save_convection if (timavgperts .and. eots) then if (joff .eq. 0) nta_conv = nta_conv + 1 do j=js,je jrow = j + joff do i=istrt,iend ta_totalk(i,jrow) = ta_totalk(i,jrow) + totalk(i,j) ta_vdepth(i,jrow) = ta_vdepth(i,jrow) + vdepth(i,j) ta_pe(i,jrow) = ta_pe(i,jrow) + pe(i,j) enddo enddo endif # endif !----------------------------------------------------------------------- ! construct diagnostics after convection !----------------------------------------------------------------------- idiag = 10 call diagt2 (joff, js, je, istrt, iend, idiag) # if defined O_fourfil || defined O_firfil !----------------------------------------------------------------------- ! filter tracers at high latitudes !----------------------------------------------------------------------- if (istrt .eq. 2 .and. iend .eq. imt-1) then call filt (joff, js, je) else write (stdout,'(a)') & 'Error: filtering requires is=2 and ie=imt-1 in tracer' stop '=>tracer' endif # endif do n=1,nt do j=js,je call setbcx (t(1,1,j,n,taup1), imt, km) enddo enddo !----------------------------------------------------------------------- ! construct diagnostics after filtering (for total dT/dt) !----------------------------------------------------------------------- idiag = 1 call diagt2 (joff, js, je, istrt, iend, idiag) # if !defined O_replacst !----------------------------------------------------------------------- ! if needed, construct the Atmos S.B.C.(surface boundary conditions) ! averaged over this segment ! eg: SST and possibly SSS !----------------------------------------------------------------------- call asbct (joff, js, je, istrt, iend, isst, itemp) call asbct (joff, js, je, istrt, iend, isss, isalt) # endif # if defined O_carbon call asbct (joff, js, je, istrt, iend, issdic, idic) # if defined O_carbon_13 call asbct (joff, js, je, istrt, iend, issdic13, idic13) # endif # if defined O_carbon_14 call asbct (joff, js, je, istrt, iend, issc14, ic14) # endif # endif # if defined O_npzd_alk call asbct (joff, js, je, istrt, iend, issalk, ialk) # endif # if defined O_npzd_o2 call asbct (joff, js, je, istrt, iend, isso2, io2) # endif # if defined O_npzd call asbct (joff, js, je, istrt, iend, isspo4, ipo4) call asbct (joff, js, je, istrt, iend, issdop, idop) # if !defined O_npzd_no_vflux call asbct (joff, js, je, istrt, iend, issphyt, iphyt) call asbct (joff, js, je, istrt, iend, isszoop, izoop) call asbct (joff, js, je, istrt, iend, issdetr, idetr) # endif # if defined O_npzd_nitrogen call asbct (joff, js, je, istrt, iend, issno3, ino3) call asbct (joff, js, je, istrt, iend, issdon, idon) # if !defined O_npzd_no_vflux call asbct (joff, js, je, istrt, iend, issdiaz, idiaz) # endif # if defined O_npzd_nitrogen_15 call asbct (joff, js, je, istrt, iend, issdin15, idin15) call asbct (joff, js, je, istrt, iend, issdon15, idon15) # if !defined O_npzd_no_vflux call asbct (joff, js, je, istrt, iend, issphytn15, iphytn15) call asbct (joff, js, je, istrt, iend, isszoopn15, izoopn15) call asbct (joff, js, je, istrt, iend, issdetrn15, idetrn15) call asbct (joff, js, je, istrt, iend, issdiazn15, idiazn15) # endif # endif # endif # if defined O_npzd_iron call asbct (joff, js, je, istrt, iend, issdfe, idfe) # if !defined O_npzd_no_vflux call asbct (joff, js, je, istrt, iend, issdetrfe, idetrfe) # endif # endif # if defined O_carbon_13 call asbct (joff, js, je, istrt, iend, issdoc13, idoc13) # if !defined O_npzd_no_vflux call asbct (joff, js, je, istrt, iend, issphytc13, iphytc13) call asbct (joff, js, je, istrt, iend, isszoopc13, izoopc13) call asbct (joff, js, je, istrt, iend, issdetrc13, idetrc13) # if defined O_npzd_nitrogen call asbct (joff, js, je, istrt, iend, issdiazc13, idiazc13) # endif # endif # endif # endif # if defined O_cfcs_data || O_cfcs_data_transient call asbct (joff, js, je, istrt, iend, isscfc11, icfc11) call asbct (joff, js, je, istrt, iend, isscfc12, icfc12) # endif # if defined O_sed !----------------------------------------------------------------------- ! accumulate bottom tracer values for the sediment model !----------------------------------------------------------------------- if (addflxo .and. eots) then if (joff .eq. 0) atsed = atsed + twodt(1) do j=js,je jrow = j + joff do i=is,ie if (kmt(i,jrow) .gt. 0) then k = kmt(i,jrow) sbc(i,jrow,ibtemp) = sbc(i,jrow,ibtemp) & + t(i,k,j,itemp,taup1)*twodt(1) sbc(i,jrow,ibsalt) = sbc(i,jrow,ibsalt) & + t(i,k,j,isalt,taup1)*twodt(1) # if defined O_carbon sbc(i,jrow,ibdic) = sbc(i,jrow,ibdic) & + t(i,k,j,idic,taup1)*twodt(1) # endif # if defined O_npzd_alk sbc(i,jrow,ibalk) = sbc(i,jrow,ibalk) & + t(i,k,j,ialk,taup1)*twodt(1) # endif # if defined O_npzd_o2 sbc(i,jrow,ibo2) = sbc(i,jrow,ibo2) & + t(i,k,j,io2,taup1)*twodt(1) # endif endif enddo enddo endif # endif # if defined O_carbon && defined O_carbon_14 !----------------------------------------------------------------------- ! calculate diagnostic delta carbon 14 !----------------------------------------------------------------------- if (tsiperts .or. timavgperts) then rrc14std = 1000./rc14std do j=js,je jrow = j + joff do k=1,km do i=istrt,iend dc14(i,k,j) = (rrc14std*t(i,k,j,ic14,taup1) & /(t(i,k,j,idic,taup1) + epsln) - 1000.) & *tmask(i,k,j) enddo enddo enddo endif if (tsiperts .and. eots) then if (js+joff .eq. 2) dc14bar = 0. do j=js,je jrow = j + joff fy = cst(jrow)*dyt(jrow) do k=1,km fyz = fy*dzt(k) do i=istrt,iend dc14bar = dc14bar + dc14(i,k,j)*dxt(i)*fyz*tmask(i,k,j) enddo enddo enddo endif if (timavgperts .and. .not. euler2) then do j=js,je jrow = j + joff do k=1,km do i=istrt,iend ta_dc14(i,k,jrow) = ta_dc14(i,k,jrow) + dc14(i,k,j) enddo enddo enddo endif # endif return end subroutine diagt1 (joff, js, je, is, ie, n, twodt) !----------------------------------------------------------------------- ! construct diagnostics associated with tracer component "n" ! input: ! joff = offset relating "j" in the MW to latitude "jrow" ! js = starting row in the MW ! je = ending row in the MW ! is = starting longitude index in the MW ! ie = ending longitude index in the MW ! n = (1,2) = (u,v) velocity component ! twodt = (2*dtts,dtts) on (leapfrog,mixing) time steps !----------------------------------------------------------------------- implicit none integer i, k, j, ip, kr, jq, n, jp, jrow, js, je, joff, is, ie integer mask, m real t_i, t_j, dz_t2r, dz_tr, dz_wtr, dx_t2r, dx_tr, dy_t2r real dy_tr, adv_tx, adv_ty, adv_tz, adv_txiso, adv_tyiso real adv_tziso, diff_tx, diff_ty, diff_tz, dtdx, dtdy, dtdz real r2dt, cosdyt, fx, darea, boxar, rtwodt, sumdx, delx real sumdxr, dxdy, dxdydz include "size.h" include "param.h" include "pconst.h" include "stdunits.h" include "accel.h" include "coord.h" include "cregin.h" include "csbc.h" # if defined O_tracer_averages include "ctavg.h" # endif include "diag.h" include "diaga.h" include "emode.h" include "grdvar.h" include "hmixc.h" include "levind.h" include "mw.h" include "scalar.h" include "switch.h" include "vmixc.h" # if defined O_meridional_tracer_budget include "ctmb.h" real stor(imt,km), div(imt,km), sorc(imt,km), dif(imt,km) real t1(imt), t2(imt), t3(imt), t4(imt) # endif # if defined O_time_step_monitor real temp1(imt,km), temp2(imt,km), temp3(imt,km) # endif real twodt(km) # if defined O_isopycmix include "isopyc.h" # endif include "fdift.h" # if defined O_save_mixing_coeff !----------------------------------------------------------------------- ! diagnostic: estimate mixing coefficients on east, north, and ! bottom face of T cells from the flux !----------------------------------------------------------------------- if (cmixts .and. n .eq. 1 .and. eots) then do j=js,je jrow = j + joff do k=1,km do i=2,imt-1 dtdx = (t(i+1,k,j,1,taum1)-t(i,k,j,1,taum1)) & *tmask(i+1,k,j)*tmask(i,k,j) & *cstr(jrow)*dxur(i) + epsln ce(i,k,j,2) = diff_fe(i,k,j)/dtdx # if !defined O_consthmix || defined O_biharmonic || defined O_isopycmix dtdy = (t(i,k,j+1,1,taum1)-t(i,k,j,1,taum1)) & *tmask(i,k,j+1)*tmask(i,k,j) & *dyur(jrow) + epsln cn(i,k,j,2) = csur(jrow)*diff_fn(i,k,j)/dtdy # else cn(i,k,j,2) = csur(jrow)*ah # endif enddo enddo enddo do j=js,je jrow = j + joff do k=1,km-1 do i=2,imt-1 dtdz = (t(i,k,j,1,taum1)-t(i,k+1,j,1,taum1)) & *tmask(i,k,j)*tmask(i,k+1,j) & *dzwr(k) + epsln cb(i,k,j,2) = diff_fb(i,k,j)/dtdz # if defined O_isopycmix & + diff_fbiso(i,k,j)/dtdz # endif enddo enddo do i=2,imt-1 cb(i,km,j,2) = 0.0 enddo enddo do j=js,je call setbcx (ce(1,1,j,2), imt, km) call setbcx (cn(1,1,j,2), imt, km) call setbcx (cb(1,1,j,2), imt, km) enddo endif # endif # if defined O_save_convection_full !----------------------------------------------------------------------- ! diagnostic: initialize temperature before convection !----------------------------------------------------------------------- if (exconvts .and. n .eq. 1 .and. eots) then do j=js,je do k=1,km do i=1,imt excnv0(i,k,j) = t(i,k,j,1,taup1) enddo enddo enddo endif # endif # if defined O_time_step_monitor !----------------------------------------------------------------------- ! diagnostic: integrate |d(tracer)/dt| and tracer variance on "tau" ! globally !----------------------------------------------------------------------- if (tsiperts .and. eots) then do j=js,je jrow = j + joff r2dt = c1/c2dtts cosdyt = cst(jrow)*dyt(jrow) do k=1,km fx = r2dt/dtxcel(k) do i=is,ie darea = dzt(k)*dxt(i)*cosdyt*tmask(i,k,j) temp3(i,k) = t(i,k,j,n,tau)*darea temp1(i,k) = t(i,k,j,n,tau)**2*darea temp2(i,k) = abs(t(i,k,j,n,taup1)-t(i,k,j,n,taum1))* & darea*fx enddo do i=is,ie tbar(k,n,jrow) = tbar(k,n,jrow) + temp3(i,k) travar(k,n,jrow) = travar(k,n,jrow) + temp1(i,k) dtabs(k,n,jrow) = dtabs(k,n,jrow) + temp2(i,k) enddo enddo enddo endif # endif # if defined O_tracer_averages !----------------------------------------------------------------------- ! diagnostic: accumulate tracers for averages under horizontal ! regions (use units of meters, rather than cm) !----------------------------------------------------------------------- if (tavgts .and. eots) then do j=js,je jrow = j + joff do i=is,ie mask = mskhr(i,jrow) if (mask .ne. 0) then boxar = cst(jrow)*dxt(i)*dyt(jrow)*tmask(i,1,j)*0.0001 sumbf(mask,n) = sumbf(mask,n) + stf(i,j,n)*boxar do k=1,km sumbk(mask,k,n) = sumbk(mask,k,n) + t(i,k,j,n,tau) & *boxar*dzt(k)*tmask(i,k,j)*0.01 enddo endif enddo enddo endif # endif # if defined O_tracer_yz !---------------------------------------------------------------------- ! diagnostic: integrate tracer equations in longitude !---------------------------------------------------------------------- if (tyzts .and. eots) then do j=js,je jrow = j + joff do k=1,km rtwodt = c1/twodt(k) sumdx = c0 do m=1,5 tyz(jrow,k,n,m) = c0 enddo do i=is,ie delx = dxt(i)*tmask(i,k,j) sumdx = sumdx + delx tyz(jrow,k,n,1) = tyz(jrow,k,n,1)+ delx*t(i,k,j,n,tau) tyz(jrow,k,n,2) = tyz(jrow,k,n,2) + rtwodt*delx* & (t(i,k,j,n,taup1) - t(i,k,j,n,taum1)) tyz(jrow,k,n,3) = tyz(jrow,k,n,3) & - delx*(ADV_Ty(i,k,j,jrow,n) + ADV_Tz(i,k,j)) tyz(jrow,k,n,4) = tyz(jrow,k,n,4) & + delx*(DIFF_Ty(i,k,j,jrow,n) + DIFF_Tz(i,k,j)) # if defined O_source_term || defined O_npzd || defined O_carbon_14 tyz(jrow,k,n,5) = tyz(jrow,k,n,5) + delx*source(i,k,j) # endif enddo sumdxr = c1/(sumdx + epsln) do m=1,5 tyz(jrow,k,n,m) = tyz(jrow,k,n,m)*sumdxr enddo enddo enddo if (js+joff .eq. 2) then do m=1,5 do k=1,km tyz(1,k,n,m) = c0 tyz(jmt,k,n,m) = c0 enddo enddo endif endif # endif # if defined O_meridional_tracer_budget !---------------------------------------------------------------------- ! diagnostic: integrate equations in depth, lon, and time for ! each basin and jrow. basin # 0 is used to catch ! values in land areas !---------------------------------------------------------------------- if (tmbperts .and. eots) then do j=js,je jrow = j + joff if (jrow .eq. 2 .and. n .eq. 1) numtmb = numtmb + 1 cosdyt = cst(jrow)*dyt(jrow) do k=1,km do i=is,ie stor(i,k) = 0.0 div(i,k) = 0.0 sorc(i,k) = 0.0 dif(i,k) = 0.0 enddo enddo do k=1,km rtwodt = c1/twodt(k) do i=is,ie dxdy = cosdyt*dxt(i)*tmask(i,k,j) dxdydz = dxdy*dzt(k) stor(i,k) = stor(i,k) + rtwodt*dxdydz* & (t(i,k,j,n,taup1) - t(i,k,j,n,taum1)) div(i,k) = div(i,k) - dxdydz*ADV_Ty(i,k,j,jrow,n) # if defined O_source_term || defined O_npzd || defined O_carbon_14 sorc(i,k) = sorc(i,k) + dxdydz*source(i,k,j) # endif dif(i,k) = dif(i,k) + dxdydz*DIFF_Ty(i,k,j,jrow,n) enddo enddo ! the accumulation is done this way for issues of speed do i=is,ie t1(i) = stor(i,1) t2(i) = div(i,1) t3(i) = sorc(i,1) t4(i) = dif(i,1) enddo do k=2,km do i=is,ie t1(i) = t1(i) + stor(i,k) t2(i) = t2(i) + div(i,k) t3(i) = t3(i) + sorc(i,k) t4(i) = t4(i) + dif(i,k) enddo enddo do i=is,ie m = msktmb(i,jrow) tstor(jrow,n,m) = tstor(jrow,n,m) + t1(i) tdiv(jrow,n,m) = tdiv(jrow,n,m) + t2(i) tsorc(jrow,n,m) = tsorc(jrow,n,m) + t3(i) tdif(jrow,n,m) = tdif(jrow,n,m) + t4(i) enddo k = 1 do i=is,ie m = msktmb(i,jrow) dxdy = cosdyt*dxt(i)*tmask(i,k,j) tflux(jrow,n,m) = tflux(jrow,n,m) + dxdy*stf(i,j,n) enddo if (n .eq. 1) then do k=1,km do i=is,ie m = msktmb(i,jrow) dxdy = cosdyt*dxt(i)*tmask(i,k,j) dxdydz = dxdy*dzt(k) smdvol(jrow,m) = smdvol(jrow,m) + dxdydz enddo enddo endif enddo endif # endif # if defined O_gyre_components !----------------------------------------------------------------------- ! diagnostic: compute the northward transport components of ! each tracer !----------------------------------------------------------------------- if (gyrets .and. eots) call gyre (joff, js, je, is, ie, n) # endif # if defined O_term_balances !----------------------------------------------------------------------- ! diagnostic: integrate r.h.s. terms in the tracer equations ! over specified regional volumes. !----------------------------------------------------------------------- if (trmbts .and. eots) call ttb1 (joff, js, je, is, ie, n) # endif # if defined O_xbts !----------------------------------------------------------------------- ! diagnostic: accumulate r.h.s. terms in the tracer equations !----------------------------------------------------------------------- if (xbtperts .and. eots) call txbt1 (joff, js, je, n) # endif # if defined O_mom_tbt !----------------------------------------------------------------------- ! diagnostic: accumulate r.h.s. terms in the tracer equations !----------------------------------------------------------------------- if (tbtperts .and. eots) call tbt1 (joff, js, je, n) # endif return end subroutine diagt2 (joff, js, je, is, ie, idiag) !----------------------------------------------------------------------- ! construct d(tracer)/dt diagnostics ! input: ! joff = offset relating "j" in the MW to latitude "jrow" ! js = starting row in the MW ! je = ending row in the MW ! is = starting longitude index in the MW ! ie = ending longitude index in the MW ! idiag = 1 => total tracer change ! idiag = 10 => change of tracer due to filtering(also convection) !----------------------------------------------------------------------- implicit none integer idiag, j, js, je, k, i, joff, iocv, jrow, is, ie real rdt, reltim, period include "size.h" include "param.h" include "pconst.h" include "stdunits.h" include "coord.h" include "diaga.h" include "iounit.h" include "mw.h" include "scalar.h" include "switch.h" include "tmngr.h" include "timeavgs.h" # if defined O_save_convection_full !----------------------------------------------------------------------- ! diagnostic: save tracer time change due to explicit convection ! idiag = 10 signifies diagnostics immediately after convection !----------------------------------------------------------------------- if (exconvts .and. idiag .eq. 10 .and. eots) then rdt = c1/c2dtts ! excnv1 = epsln over land cells and d(convect)/dt over ocean do j=js,je do k=1,km do i=1,imt excnv1(i,k,j) = tmask(i,k,j)* & (t(i,k,j,1,taup1)-excnv0(i,k,j))*rdt & + (c1-tmask(i,k,j))*epsln enddo enddo enddo reltim = relyr if (joff + js .eq. 2) then write (stdout,*) ' =>Writing explicit convection at ts=',itt & , ' ',stamp call getunit (iocv, 'cvct.dta' &, 'unformatted sequential append ieee') period = 0.0 iotext = 'read(iocv) reltim, period, imt, jmt, km, flag' write (iocv) stamp, iotext, expnam write (iocv) reltim, period, imt, jmt, km, epsln iotext = 'read(iocv) (xt(i),i=1,imt)' write (iocv) stamp, iotext, expnam call wrufio (iocv, xt, imt) iotext = 'read(iocv) (yt(j),j=1,jmt)' write (iocv) stamp, iotext, expnam call wrufio (iocv, yt, jmt) iotext = 'read(iocv) (zt(k),k=1,km)' write (iocv) stamp, iotext, expnam call wrufio (iocv, zt, km) call relunit (iocv) endif call getunit (iocv, 'cvct.dta' &, 'unformatted sequential append ieee') do j=js,je jrow = j+joff write(iotext,'(a10,i4)') ' for jrow=',jrow iotext(15:) = ': read (iocv) (convect(i,k),i=1,imt),k=1,km)' write (iocv) stamp, iotext, expnam call wrufio (iocv, excnv1(1,1,j), imt*km) enddo call relunit(iocv) endif # endif # if defined O_term_balances !----------------------------------------------------------------------- ! diagnostic: integrate d/dt(tracer) over specified regional volumes ! after convection and filtering !----------------------------------------------------------------------- if (trmbts .and. eots) call ttb2 (joff, js, je, is, ie, idiag) # endif # if defined O_xbts !----------------------------------------------------------------------- ! diagnostic: accumulate d/dt(tracer) after convection ! and filtering !----------------------------------------------------------------------- if (xbtperts .and. eots) call txbt2 (joff, js, je, idiag) # endif # if defined O_mom_tbt !----------------------------------------------------------------------- ! diagnostic: accumulate d/dt(tracer) after convection ! and filtering !----------------------------------------------------------------------- if (tbtperts .and. eots) call tbt2 (joff, js, je, idiag) # endif return end subroutine asbct (joff, js, je, is, ie, isbc, itr) !----------------------------------------------------------------------- ! construct the Atmos S.B.C. (surface boundary conditions) ! input: ! joff = offset relating "j" in the MW to latitude "jrow" ! js = starting row in the MW ! je = ending row in the MW ! is = starting longitude index in the MW ! ie = ending longitude index in the MW ! isbc = index for sbc ! itr = index for tracer !----------------------------------------------------------------------- implicit none integer isbc, itr, j, js, je, jrow, joff, i, is, ie real rts include "size.h" include "param.h" include "pconst.h" include "stdunits.h" include "csbc.h" include "levind.h" include "mw.h" include "scalar.h" include "switch.h" ! initialize the Atmos S.B.C. at the start of each ocean segment ! (do not alter values in land) if (isbc .le. 0 .or. itr .le. 0) return if (eots .and. osegs) then do j=js,je jrow = j + joff do i=is,ie if (kmt(i,jrow) .ne. 0) sbc(i,jrow,isbc) = c0 enddo enddo endif ! accumulate surface tracers for the Atmos S.B.C. every time step if (eots) then do j=js,je jrow = j + joff do i=is,ie sbc(i,jrow,isbc) = sbc(i,jrow,isbc)+t(i,1,j,itr,taup1) enddo enddo endif ! average the surface tracers for the Atmos S.B.C. at the end of ! each ocean segment. (do not alter values in land) if (eots .and. osege) then rts = c1/ntspos do j=js,je jrow = j + joff do i=is,ie if (kmt(i,jrow) .ne. 0) & sbc(i,jrow,isbc) = rts*sbc(i,jrow,isbc) enddo enddo endif return end subroutine ivdift (joff, js, je, is, ie, n, twodt) # if defined O_implicitvmix || defined O_isopycmix || defined O_redi_diffusion !----------------------------------------------------------------------- ! solve vertical diffusion of tracers implicitly ! input: ! joff = offset relating "j" in the MW to latitude "jrow" ! js = starting row in the MW ! je = ending row in the MW ! is = starting longitude index in the MW ! ie = ending longitude index in the MW ! n = tracer component ! twodt = (2*dtts, dtts) on (leapfrog, mixing) time steps !----------------------------------------------------------------------- implicit none integer j, js, je, k, i, is, ie, n, joff real rc2dt include "size.h" include "param.h" include "pconst.h" include "stdunits.h" include "levind.h" include "mw.h" include "switch.h" include "vmixc.h" real twodt(km) ! store terms to compute implicit vertical mixing on ! diagnostic time steps # if defined O_xbts || defined O_mom_tbt if (eots) then do j=js,je do k=1,km do i=is,ie zzi(i,k,j) = t(i,k,j,n,taup1) enddo enddo enddo endif # else # if defined O_term_balances if (trmbts .and. eots) then do j=js,je do k=1,km do i=is,ie zzi(i,k,j) = t(i,k,j,n,taup1) enddo enddo enddo endif # endif # endif call invtri (t(1,1,1,n,taup1), stf(1,1,n), btf(1,1,n) &, diff_cbt(1,1,jsmw), twodt, kmt, tmask(1,1,1), is, ie &, joff, js, je) ! compute residual implicit vertical mixing # if defined O_xbts || defined O_mom_tbt if (eots) then do j=js,je do k=1,km rc2dt = c1/twodt(k) do i=is,ie zzi(i,k,j) = rc2dt*(t(i,k,j,n,taup1) - zzi(i,k,j)) enddo enddo enddo endif # else # if defined O_term_balances if (trmbts .and. eots) then do j=js,je do k=1,km rc2dt = c1/twodt(k) do i=is,ie zzi(i,k,j) = rc2dt*(t(i,k,j,n,taup1) - zzi(i,k,j)) enddo enddo enddo endif # endif # endif # endif return end subroutine swflux0 (joff, js, je, is, ie, source) # if defined O_mom && defined O_shortwave !======================================================================= ! incorporate short wave penetration via the "source" ! term. note that the divergence of shortwave for the first ! level "divpen(1)" is compensating for the effect of having ! the shortwave component already included in the total ! surface tracer flux "stf(i,j,1)" ! incorporating the penetrative shortwave radiative flux into ! the vertical diffusive flux term directly is not correct when ! vertical diffusion is solved implicitly. ! input: ! joff = offset relating "j" in the MW to latitude "jrow" ! js = starting row in the MW ! je = ending row in the MW ! is = starting longitude index in the MW ! ie = ending longitude index in the MW ! output: ! source = source term penetrative short wave !======================================================================= implicit none integer j, js, je, jrow, joff, k, i, is, ie include "size.h" include "param.h" include "pconst.h" include "stdunits.h" include "csbc.h" include "cshort.h" real source(imt,km,jsmw:jemw) if (iswr .ne. 0) then do j=js,je jrow = j + joff do k=1,km do i=is,ie source(i,k,j) = source(i,k,j) & + sbc(i,jrow,ipsw)*divpen(k) enddo enddo enddo endif # endif #endif return end !