# Galapagos Islands and Great Barrier Reef coral and geochemical data from 1729-2010 CE #----------------------------------------------------------------------- # World Data Service for Paleoclimatology, Boulder # and # NOAA Paleoclimatology Program #----------------------------------------------------------------------- # Template Version 4.0 # Encoding: UTF-8 # NOTE: Please cite original publication, NOAA Landing Page URL, dataset and publication DOIs (where available), and date accessed when using downloaded data. # If there is no publication information, please cite investigator, study title, NOAA Landing Page URL, and date accessed. # # Description/Documentation lines begin with '#' followed by a space # Data lines have no '#' # # NOAA_Landing_Page: https://www.ncdc.noaa.gov/access/paleo-search/study/35193 # Landing_Page_Description: NOAA Landing Page of this file's parent study, which includes all study metadata. # # Study_Level_JSON_Metadata: https://www.ncei.noaa.gov/pub/data/metadata/published/paleo/json/noaa-coral-35193.json # Study_Level_JSON_Description: JSON metadata of this data file's parent study, which includes all study metadata. # # Data_Type: Corals and Sclerosponges # # Dataset_DOI: 10.25921/y68n-1x24 # # Science_Keywords: ocean acidification #--------------------------------------- # Resource_Links # # Data_Download_Resource: https://www.ncei.noaa.gov/pub/data/paleo/coral/east_pacific/thompson2021/gw10-10density-thompson2021.txt # Data_Download_Description: NOAA Template File; Galápagos GW10-10 Monthly Density Data # #--------------------------------------- # Contribution_Date # Date: 2022-01-06 #--------------------------------------- # File_Last_Modified_Date # Date: 2022-04-07 #--------------------------------------- # Title # Study_Name: Galapagos Islands and Great Barrier Reef coral and geochemical data from 1729-2010 CE #--------------------------------------- # Investigators # Investigators: Thompson, Diane M.; McCulloch, Malcolm; Cole, Julia E.; Reed, Emma V.; D'Olivo, Juan P.; Dyez, Kelsey; Lofverstrom, Marcus; Lough, Janice; Cantin, Neal; Tudhope, Alexander W.; Cheung, Anson, H., Vetter, Lael; Edwards, R. Lawrence #--------------------------------------- # Description_Notes_and_Keywords # Description: We leverage geochemical tracers of coral biomineralization–skeletal B/Ca ([CO3-]), d11B (pHcf), and U/Ca ([CO3-])–that constrain the calcifying fluid chemistry, including the aragonite saturation that governs calcification rate (DeCarlo et al., 2018, 2015). We combine these with paleo-environmental tracers that primarily reflect factors external to the coral calcification environment: Sr/Ca (Beck et al., 1992; Corrège et al., 2000), Li/Mg (Hathorne, Felis, et al., 2013; Montagna et al., 2014), and d18O (Weber & Woodhead, 1972; McConnaughey, 1989) (all primarily controlled by SST); Ba/Ca (upwelling, Lea et al., 1989; Shen et al., 1992); and d13C (upwelling, metabolic carbon / photosynthesis, respiration, and reproduction, G. T. Shen et al., 1992). These new recent (1976-2010) and fossil (1729-1733) Galápagos records (Wolf Island, 1o23.15’N, 91o49.90’W) significantly extend the multi-tracer data coverage prior to the industrial era, which allows us to assess the capacity of corals to buffer against changing environmental conditions. We compare our new Galápagos results with published data from the Great Barrier Reef (McCulloch et al., 2017) to contextualize results from the marginal Galápagos reef environment–a comparatively cold, low-saturation, and highly variable environment. # Provided Keywords: boron isotopes, trace elemental geochemistry, ocean acidification, heat stress, ENSO #--------------------------------------- # Publication # Authors: Thompson, Diane M.; McCulloch, Malcolm; Cole, Julia E.; Reed, Emma V.; D'Olivo, Juan P.; Dyez, Kelsey; Lofverstrom, Marcus; Lough, Janice; Cantin, Neal; Tudhope, Alexander W.; Cheung, Anson, H., Vetter, Lael; Edwards, R. Lawrence # Published_Date_or_Year: 2022-02-01 # Published_Title: Marginal reefs under stress: physiological limits render Galápagos corals susceptible to ocean acidification and thermal stress # Journal_Name: AGU Advances # Volume: 3 # Edition: # Issue: 1 # Pages: # Report_Number: e2021AV000509 # DOI: 10.1029/2021AV000509 # Online_Resource: # Full_Citation: # Abstract: Ocean acidification and thermal stress may undermine corals’ ability to calcify and support diverse reef communities, particularly in marginal environments. Coral calcification depends on aragonite supersaturation (Ω>>1) of the calcifying fluid (cf) from which the skeleton precipitates. Corals actively upregulate pHcf relative to seawater to buffer against changes in temperature and dissolved inorganic carbon (DICcf), which together control Ωcf. Here we assess the buffering capacity in modern and fossil corals from the Galápagos Islands that have been exposed to sub-optimal conditions, extreme thermal stress, and ocean acidification. We demonstrate a significant decline in pHcf and Ωcf since the pre-industrial era, trends which are exacerbated during extreme warm years. These results suggest that there are likely physiological limits to corals’ pH buffering capacity, and that these constraints render marginal reefs particularly susceptible to ocean acidification. #--------------------------------------- # Publication # Authors: McCulloch, M.T.; D’Olivo, J. P.; Falter, J.; Holcomb, M.; & Trotter, J. A. # Published_Date_or_Year: 2017 # Published_Title: Coral calcification in a changing world and the interactive dynamics of pH and DIC upregulation.  # Journal_Name: Nature Communications # Volume: 8 # Edition: # Issue: # Pages: # Report_Number: 15686 # DOI: 10.1038/ncomms15686 # Online_Resource: # Full_Citation: # Abstract: Coral calcification is dependent on the mutualistic partnership between endosymbiotic zooxanthellae and the coral host. Here, using newly developed geochemical proxies (d11B and B/Ca), we show that Porites corals from natural reef environments exhibit a close (r2 ~0.9) antithetic relationship between dissolved inorganic carbon (DIC) and pH of the corals’ calcifying fluid (cf). The highest DICcf (~ × 3.2 seawater) is found during summer, consistent with thermal/light enhancement of metabolically (zooxanthellae) derived carbon, while the highest pHcf (~8.5) occurs in winter during periods of low DICcf (~ × 2 seawater). These opposing changes in DICcf and pHcf are shown to maintain oversaturated but stable levels of carbonate saturation (Ocf ~ × 5 seawater), the key parameter controlling coral calcification. These findings are in marked contrast to artificial experiments and show that pHcf upregulation occurs largely independent of changes in seawater carbonate chemistry, and hence ocean acidification, but is highly vulnerable to thermally induced stress from global warming. #--------------------------------------- # Publication # Authors: Reed, E.V.; Thompson, D.M.; Cole, J.E.; Lough, J.M; Cantin, N.E.; Cheung, A.H., Tudhope, A.; Vetter, L., Jimenez, G.; and Edward, R.L. # Published_Date_or_Year: 2021-04-01 # Published_Title: Impacts of coral growth on geochemistry: Lessons from the Galapagos Islands # Journal_Name: Paleoceanography and Paleoclimatology # Volume: 36 # Edition: # Issue: 4 # Pages: # Report_Number: e2020PA004051 # DOI: 10.1029/2020PA004051 # Online_Resource: # Full_Citation: # Abstract: Coral geochemical climate reconstructions can extend our knowledge of global climate variability and trends over timescales longer than those of instrumental data. However, such reconstructions can be biased by coral growth and skeletal architecture, such as growth troughs, off-axis corallite orientation, and changing growth direction. This study quantifies the impact of skeletal architecture and growth on geochemistry using measurements of coral skeletal density, extension rate, and calcification rate, and uses these metrics to improve paleoclimate reconstructions. We present paired geochemistry-density records at Wolf Island, Galápagos, from three Porites lobata corals: two new paired density and geochemistry records from one fossil coral, and new density data from two previously published modern geochemistry records. We categorize each sampling transect used in this record by the quality of its orientation with respect to skeletal architecture. We observe relationships between geochemistry and density that are not detected using extension or calcification rate alone. These density-geochemistry relationships likely reflect both the response of coral growth to environmental conditions and the non-climatic impact of skeletal architecture on geochemistry in sub-optimal sampling transects. Correlations of density with Sr/Ca, Ba/Ca, and Mg/Ca are consistent with the Rayleigh fractionation model of trace element incorporation into coral skeletons. Removing transects with sub-optimal skeletal architecture increases mean reconstructed SST closer to instrumental mean SST, and lowers errors of reconstruction by up to 20%. These results demonstrate the usefulness of coral density data for assessing skeletal architecture and growth when generating coral paleoclimate records. #--------------------------------------- # Publication # Authors: Jimenez, G.; Cole, J.E.; Thompson, D.M.; and Tudhope, A.W. # Published_Date_or_Year: 2018 # Published_Title: Northern Galápagos Corals Reveal Twentieth Century Warming in the Eastern Tropical Pacific # Journal_Name: Geophysical Research Letters # Volume: 45 # Edition: # Issue: # Pages: 1981-1988 # Report_Number: # DOI: 10.1002/2017GL075323 # Online_Resource: # Full_Citation: # Abstract: Models and observations disagree regarding sea surface temperature (SST) trends in the eastern tropical Pacific. We present a new Sr/Ca-SST record that spans 1940–2010 from two Wolf Island corals (northern Gala´pagos). Trend analysis of the Wolf record shows significant warming on multiple timescales, which is also present in several other records and gridded instrumental products. Together, these data sets suggest that most of the eastern tropical Pacific has warmed over the twentieth century. In contrast, recent decades have been characterized by warming during boreal spring and summer (especially north of the equator), and subtropical cooling during boreal fall and winter (especially south of the equator). These SST trends are consistent with the effects of radiative forcing, mitigated by cooling due to wind forcing during boreal winter, as well as intensified upwelling and a strengthened Equatorial Undercurrent. #--------------------------------------- # Publication # Authors: Cheung, A.H.; Cole, J.E.; Thompson, D.M.; Vetter, L., Jimenez, G.; and Tudhope, A.W. # Published_Date_or_Year: 2021-12-01 # Published_Title: Fidelity of the Coral Sr/Ca Paleothermometer Following Heat Stress in the Northern Galápagos # Journal_Name: Paleoceanography and Paleoclimatology # Volume: 36 # Edition: # Issue: 12 # Pages: # Report_Number: e2021PA004323 # DOI: 10.1029/2021PA004323 # Online_Resource: # Full_Citation: # Abstract: Coral Sr/Ca records have been widely used to reconstruct and understand past sea surface temperature (SST) variability in the tropical Pacific. However, in the eastern equatorial Pacific, coral growth conditions are marginal, and strong El Niño events have led to high mortality, limiting opportunities for coral Sr/Ca-based SST reconstructions. In this study, we present two ~25-year Sr/Ca and Mg/Ca records measured on modern Porites lobata from Wolf and Darwin Islands in the northern Galápagos. In these records, we confirm the well-established relationship between Sr/Ca and SST and investigate the impact of heat stress on this relationship. We demonstrate a weakened relationship between Sr/Ca and SST after a major (Degree Heating Months 9°C-months) heat stress event during the 1997–1998 El Niño, with a larger response in the Wolf core. However, removing data that covers the 1997–1998 El Niño from calibration does not improve reconstruction statistics. Nevertheless, we find that excluding data after the 1997–1998 El Niño event from the calibration reduces the SST reconstruction error slightly. These results confirm that coral Sr/Ca is a reliable SST proxy in this region, although it can respond adversely to unusual heat stress. We suggest that noise in Sr/Ca-SST calibrations may be reduced by removing data immediately following large heat extremes. #--------------------------------------- # Funding_Agency # Funding_Agency_Name: NSF # Grant: 1401326/1829613 and 0957881 #--------------------------------------- # Funding_Agency # Funding_Agency_Name: UK Natural Environment Research Council # Grant: NE/H009957/1 #--------------------------------------- # Funding_Agency # Funding_Agency_Name: ARC Centre of Excellence # Grant: CE140100020 #--------------------------------------- # Funding_Agency # Funding_Agency_Name: Boston University # Grant: Startup funds #--------------------------------------- # Site_Information # Site_Name: Wolf Island # Location: Galápagos Islands # Northernmost_Latitude: 1.385833 # Southernmost_Latitude: 1.385833 # Easternmost_Longitude: -91.831667 # Westernmost_Longitude: -91.831667 # Elevation_m: #--------------------------------------- # Data_Collection # Collection_Name: GW10-10Density-Thompson2021 # First_Year: 1976 # Last_Year: 2010 # Time_Unit: year Common Era # Core_Length_m: # Parameter_Keywords: physical properties # Notes: #--------------------------------------- # Chronology_Information # Chronology: #--------------------------------------- # Variables # PaST_Thesaurus_Download_Resource: https://www.ncdc.noaa.gov/paleo/skos/past-thesaurus.rdf # PaST_Thesaurus_Download_Description: Paleoenvironmental Standard Terms (PaST) Thesaurus terms, definitions, and relationships in SKOS format. # # Data variables follow that are preceded by "##" in columns one and two. # Variables list, one per line, shortname-tab-var components: what, material, error, units, seasonality, data type, detail, method, C or N for Character or Numeric data) # ## Time_Density age,,,year Common Era,monthly,corals and sclerosponges,interpolated,,N, ## Density_Transect_1 density,Porites lobata,,gram per cubic centimeter,monthly,corals and sclerosponges,interpolated,x-ray densitometry,N,Transect 1;error reported as percent difference of standard from known value; error detail: 1.8 ## Density_Transect_2 density,Porites lobata,,gram per cubic centimeter,monthly,corals and sclerosponges,interpolated,x-ray densitometry,N,Transect 2;error reported as percent difference of standard from known value; error detail: 1.8 ## Average_Density density,Porites lobata,,gram per cubic centimeter,monthly,corals and sclerosponges,averaged,x-ray densitometry,N,average of Transect 1+2;error reported as percent difference of standard from known value; error detail: 1.8 #------------------------ # Data: # Data lines follow (have no #) # Data line format - tab-delimited text, variable short name as header # Missing_Values: NaN Time_Density Density_Transect_1 Density_Transect_2 Average_Density 2010.208 1.185376 1.199708 1.192542 2010.125 1.092015 1.324669 1.208342 2010.041 1.151149 1.361633 1.256391 2009.958 1.241815 1.3719 1.306857 2009.875 1.274424 1.408687 1.341556 2009.791 1.308572 1.318276 1.313424 2009.708 1.304673 1.370287 1.33748 2009.625 1.341433 1.294591 1.318012 2009.541 1.363364 1.294329 1.328847 2009.458 1.296014 1.300291 1.298152 2009.375 1.215263 1.112881 1.164072 2009.291 1.070341 1.076094 1.073218 2009.208 1.034511 0.993475 1.013993 2009.125 1.011907 1.03413 1.023018 2009.041 1.029043 0.964332 0.996688 2008.958 1.045218 0.981971 1.013594 2008.875 1.061518 0.993882 1.0277 2008.791 1.021353 1.049351 1.035352 2008.708 1.105688 1.086968 1.096328 2008.625 1.109537 1.100824 1.10518 2008.541 1.207982 1.02528 1.116631 2008.458 1.207362 1.146401 1.176882 2008.375 1.335194 1.139351 1.237272 2008.291 1.053082 1.139523 1.096302 2008.208 1.000193 1.328905 1.164549 2008.125 1.216297 1.179016 1.197656 2008.041 1.178457 1.136194 1.157326 2007.958 1.17479 1.280023 1.227407 2007.875 1.089918 1.203912 1.146915 2007.791 1.053036 1.221587 1.137311 2007.708 1.080269 1.251412 1.16584 2007.625 1.118152 1.244519 1.181335 2007.541 1.178578 1.217541 1.19806 2007.458 1.191523 1.137322 1.164422 2007.375 1.348776 1.394004 1.37139 2007.291 1.25417 1.324643 1.289406 2007.208 1.244131 1.301273 1.272702 2007.125 1.156542 1.158906 1.157724 2007.041 1.159501 1.195992 1.177746 2006.958 1.07157 1.090359 1.080964 2006.875 1.306003 1.272523 1.289263 2006.791 1.288673 1.358589 1.323631 2006.708 1.281941 1.351258 1.3166 2006.625 1.380728 1.430472 1.4056 2006.541 1.268015 1.449026 1.35852 2006.458 1.207696 1.207357 1.207527 2006.375 1.25881 1.16059 1.2097 2006.291 1.218946 1.125021 1.171984 2006.208 1.200176 1.159175 1.179675 2006.125 1.202975 1.184893 1.193934 2006.041 1.166766 1.216809 1.191788 2005.958 1.085356 1.186185 1.13577 2005.875 1.115034 1.141764 1.128399 2005.791 1.254904 1.26182 1.258362 2005.708 1.257873 1.563521 1.410697 2005.625 1.403868 1.349214 1.376541 2005.541 1.343075 1.507137 1.425106 2005.458 1.346785 1.26293 1.304857 2005.375 1.25758 1.20801 1.232795 2005.291 1.250065 1.205045 1.227555 2005.208 1.18273 1.212442 1.197586 2005.125 1.228229 1.137585 1.182907 2005.041 1.202228 1.22619 1.214209 2004.958 1.064246 1.169065 1.116656 2004.875 1.096384 1.073833 1.085109 2004.791 1.15712 1.114123 1.135622 2004.708 1.317739 1.210667 1.264203 2004.625 1.369378 1.346824 1.358101 2004.541 1.377448 1.383158 1.380303 2004.458 1.229597 1.521245 1.375421 2004.375 1.285769 1.279104 1.282437 2004.291 1.2279 1.362165 1.295033 2004.208 1.060998 1.30121 1.181104 2004.125 1.04134 1.082295 1.061817 2004.041 1.04838 1.103452 1.075916 2003.958 1.216683 1.130447 1.173565 2003.875 1.16235 1.247583 1.204967 2003.791 1.331514 1.234666 1.28309 2003.708 1.56485 1.345488 1.455169 2003.625 1.54073 1.478046 1.509388 2003.541 1.552773 1.474946 1.51386 2003.458 1.449158 1.535791 1.492474 2003.375 1.327919 1.384687 1.356303 2003.291 1.394908 1.292032 1.34347 2003.208 1.389972 1.297631 1.343802 2003.125 1.405656 1.216247 1.310951 2003.041 1.2557 1.30273 1.279215 2002.958 1.335762 1.19891 1.267336 2002.875 1.222864 1.237333 1.230098 2002.791 1.309221 1.094823 1.202022 2002.708 1.32159 1.36948 1.345535 2002.625 1.48442 1.376835 1.430627 2002.541 1.40694 1.457212 1.432076 2002.458 1.4494 1.222571 1.335985 2002.375 1.322896 1.2884 1.305648 2002.291 NaN 1.148146 1.148146 2002.208 1.190404 NaN 1.190404 2002.125 1.275378 NaN 1.275378 2002.041 1.376261 NaN 1.376261 2001.958 1.363668 NaN 1.363668 2001.875 1.245633 NaN 1.245633 2001.791 1.216214 NaN 1.216214 2001.708 1.223143 NaN 1.223143 2001.625 1.192998 NaN 1.192998 2001.541 1.104306 NaN 1.104306 2001.458 1.160933 NaN 1.160933 2001.375 1.19238 NaN 1.19238 2001.291 1.233051 1.271934 1.252493 2001.208 1.311056 1.332355 1.321705 2001.125 1.346096 1.304615 1.325355 2001.041 1.409924 1.275593 1.342758 2000.958 1.434591 1.251424 1.343007 2000.875 1.388411 1.336362 1.362387 2000.791 1.518182 1.433017 1.475599 2000.708 1.427828 1.378707 1.403268 2000.625 1.397483 1.408038 1.40276 2000.541 1.3931 1.4309 1.412 2000.458 1.36132 1.439386 1.400353 2000.375 1.34528 1.490708 1.417994 2000.291 1.491303 1.496802 1.494053 2000.208 1.450387 1.336955 1.393671 2000.125 1.46906 1.208306 1.338683 2000.041 1.303459 1.199829 1.251644 1999.958 1.3372 1.195102 1.266151 1999.875 1.37698 1.211668 1.294324 1999.791 1.362703 1.219456 1.29108 1999.708 1.456617 1.222655 1.339636 1999.625 1.53149 1.261562 1.396526 1999.541 1.577118 1.318944 1.448031 1999.458 1.595663 1.40093 1.498296 1999.375 1.515641 1.385996 1.450819 1999.291 1.371929 1.372941 1.372435 1999.208 1.410337 1.268575 1.339456 1999.125 1.393188 1.316026 1.354607 1999.041 1.429415 1.390226 1.40982 1998.958 1.598948 1.482066 1.540507 1998.875 1.653969 1.582121 1.618045 1998.791 1.666065 1.58708 1.626572 1998.708 1.571866 1.587253 1.579559 1998.625 1.417845 1.501694 1.45977 1998.541 1.50599 1.483134 1.494562 1998.458 1.525688 1.490049 1.507868 1998.375 1.436543 1.462935 1.449739 1998.291 1.381067 1.367709 1.374388 1998.208 1.459125 1.382177 1.420651 1998.125 1.430332 1.376834 1.403583 1998.041 1.380824 1.356028 1.368426 1997.958 1.270901 1.326411 1.298656 1997.875 1.229279 1.34733 1.288304 1997.791 1.351484 1.402756 1.37712 1997.708 1.312914 1.480135 1.396524 1997.625 1.372738 1.411982 1.39236 1997.541 1.213514 1.293357 1.253436 1997.458 1.168682 1.242658 1.20567 1997.375 1.159539 1.183969 1.171754 1997.291 1.034834 1.085941 1.060388 1997.208 1.056903 NaN 1.056903 1997.125 1.069889 NaN 1.069889 1997.041 1.043343 NaN 1.043343 1996.958 NaN NaN NaN 1996.875 NaN NaN NaN 1980.38 NaN 1.185256 1.185256 1980.297 NaN 1.176356 1.176356 1980.214 NaN 1.144432 1.144432 1980.13 1.035139 1.132005 1.083572 1980.047 1.054364 1.090172 1.072268 1979.964 1.08866 1.099004 1.093832 1979.88 1.123441 1.067779 1.09561 1979.797 1.155096 1.050836 1.102966 1979.714 1.151834 1.082821 1.117328 1979.63 1.180432 1.164802 1.172617 1979.547 1.253443 1.180244 1.216844 1979.464 1.220136 1.212877 1.216506 1979.38 1.163049 1.256047 1.209548 1979.297 1.129729 1.308826 1.219278 1979.214 1.12909 1.329019 1.229055 1979.13 1.136025 1.273684 1.204854 1979.047 1.165716 1.220125 1.19292 1978.964 1.172424 1.1504 1.161412 1978.88 1.127706 1.084725 1.106215 1978.797 1.187317 1.088328 1.137822 1978.714 1.293016 1.058016 1.175516 1978.63 1.262995 1.123186 1.193091 1978.547 1.279058 1.170537 1.224798 1978.464 1.259471 1.198926 1.229198 1978.38 1.222762 1.232968 1.227865 1978.297 1.156179 1.249422 1.2028 1978.214 1.174131 1.230795 1.202463 1978.13 1.17753 1.228657 1.203094 1978.047 1.127072 1.220405 1.173739 1977.964 1.151788 1.211743 1.181766 1977.88 1.166531 1.222187 1.194359 1977.797 1.211952 1.257035 1.234494 1977.714 1.18506 1.228005 1.206533 1977.63 1.176693 1.248604 1.212649 1977.547 1.196346 1.227553 1.211949 1977.464 1.28487 1.244483 1.264677 1977.38 1.344135 1.347659 1.345897 1977.297 1.332517 1.404356 1.368437 1977.214 1.292814 1.420265 1.35654 1977.13 1.32377 1.436595 1.380183 1977.047 1.319947 1.370222 1.345085 1976.964 1.274679 1.332637 1.303658 1976.88 1.228867 1.271506 1.250186 1976.797 1.267642 1.254717 1.26118 1976.714 1.301034 1.280385 1.29071 1976.63 1.334369 1.341827 1.338098 1976.547 1.418009 1.522955 1.470482 1976.464 1.446416 1.605502 1.525959 1976.38 1.409376 1.598547 1.503962 1976.297 1.333949 1.534034 1.433991 1976.214 1.273661 1.551901 1.412781