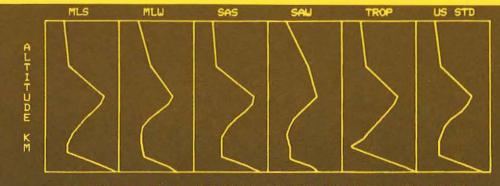
WORLD DATA CENTER A for Meteorology

and


WORLD DATA CENTER A for Solar-Terrestrial Physics

July 1984

NATIONAL CLIMATIC DATA CENTER NATIONAL GEOPHYSICAL DATA CENTER

TEMPERATURE (K) VS. ALTITUDE (KM) FOR SIX MODEL ATMOSPHERES

WORLD DATA CENTER A

National Academy of Sciences 2101 Constitution Avenue, NW Washington, D.C. 20418 USA

World Data Center A consists of the Coordination Office and the following eight Subcenters:

COORDINATION OFFICE

World Data Center A National Academy of Sciences 2101 Constitution Avenue, NW Washington, D.C. 20418 USA [Telephone: (202) 334-3359]

ROCKETS AND SATELLITES

World Data Center A: Rockets and Satellites Goddard Space Flight Center Code 601 Greenbelt, Maryland 20771 USA Telephone: (301) 344-6695

ROTATION OF THE EARTH

World Data Center A: Rotation of the Earth U.S. Naval Observatory Washington, D.C. 20390 USA Telephone: (202) 254-4547

SOLAR-TERRESTRIAL PHYSICS (Solar and

Interplanetary Phenomena, Ionospheric Phenomena, Flare-Associated Events, Geomagnetic Variations, Aurora, Cosmic Rays, Airglow):

World Data Center A for Solar-Terrestrial Physics NOAA, E/GC2 325 Broadway Boulder, Colorado 80303 USA Telephone: (303) 497-6323

SOLID-EARTH GEOPHYSICS (Seismology, Tsunamis, Gravimetry, Earth Tides,

Recent Movements of the Earth's Crust, Magnetic Measurements, Paleomagnetism and Archeomagnetism, Volcanology, Geothermics):

World Data Center A for Solid-Earth Geophysics NOAA, E/GC1 325 Broadway Boulder, Colorado 80303 USA Telephone: (303) 497-6521

GLACIOLOGY (Snow and Ice) World Data Center A: Glaciology (Snow and Ice) Cooperative Inst. for Research in Environmental Sciences University of Colorado Boulder, Colorado 80309 USA Telephone: (303) 492-5171

MARINE GEOLOGY AND GEOPHYSICS

(Gravity, Magnetics, Bathymetry, Seismic Profiles, Marine Sediment, and Rock Analyses):

World Data Center A for Marine Geology and Geophysics NOAA, E/GC3 325 Broadway Boulder, Colorado 80303 USA Telephone: (303) 497-6487

METEOROLOGY (and Nuclear Radiation) World Data Center A: Meteorology National Climatic Data Center NOAA, E/CC Federal Building Asheville, North Carolina 28801 USA Telephone: (704) 259-0682

OCEANOGRAPHY

World Data Center A: Oceanography National Oceanographic Data Center NOAA, E/OC 2001 Wisconsin Avenue, NW Page Bldg. 1, Rm. 414 Washington, D.C. 20235 USA Telephone: (202) 634-7510

World Data Centers conduct international exchange of geophysical observations in accordance with the principles set forth by the International Council of Scientific Unions. WDC-A is established in the United States under the auspices of the National Academy of Sciences. Communications regarding data interchange matters in general and World Data Center A as a whole should be addressed to World Data Center A, Coordination Office (see address above). Inquiries and communications concerning data in specific disciplines should be addressed to the appropriate subcenter listed above.

WORLD DATA CENTER A for Meteorology

and

WORLD DATA CENTER A for Solar-Terrestrial Physics

REPORT UAG-89

ATMOSPHERIC HANDBOOK Atmospheric Data Tables Available on Computer Tape

by

V.E. Derr NOAA Environmental Research Laboratories 325 Broadway Boulder, Colorado 80303 USA

July 1984

U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL ENVIRONMENTAL SATELLITE, DATA, AND INFORMATION SERVICE Boulder, Colorado, USA 80303

DESCRIPTION OF WORLD DATA CENTERS

World Data Centers conduct international exchange of geophysical observations in accordance with the principles set forth by the international Council of Scientific Unions (ICSU). They were established in 1957 by the international Geophysical Year Committee (CSAGI) as part of the fundamental international planning for the IGY program to collect data from the numerous and widespread IGY observational programs and to make such data readily accessible to interested scientists and scholars for an indefinite period of time. WDC-A was established in the U.S.A.; WDC-B in the U.S.S.R.; and WDC-C in Western Europe, Australia, and Japan. This new system for exchanging geophysical data was found to be very effective, and the operations of the World Data Centers were extended by ICSU on a continuing basis to other international programs; the WDC's were under the supervision of the Comite International de Geophysique (CIG) for the period 1960 to 1967 and are now supervised by the ICSU Panel on World Data Centers.

The current plans for continued international exchange of geophysical data through the World Data Centers are set forth in the *Fourth Consolidated Guide to International Data Exchange through the World Data Centres*, issued by the ICSU Panel on World Data Centres. These plans are broadly similar to those adopted under ICSU auspices for the IGY and subsequent international programs.

Functions and Responsibilities of WDC's

The World Data Centers collect data and publications for the following disciplines: Meteorology; Oceanography; Rockets and Satellites; Solar-Terrestrial Physics disciplines (Solar and Interplanetary Phenomena, ionospheric Phenomena, Flare-Associated Events, Geomagnetic Phenomena, Aurora, Cosmic Rays, Airgiow); Solid Earth Geophysics disciplines (Seismology, Tsunamis, Gravimetry, Earth Tides, Recent Movements of the Earth's Crust, Rotation of the Earth, Magnetic Measurements, Paleomagnetism and Archemagnetism, Volcanology, Geothermics), and Marine Geology and Geophysics. in planning for the various scientific programs, decisions on data exchange were made by the scientific community through the international scientific unions and committees. In each discipline, the specialists themselves determined the nature and form of data exchange, based on their needs as research workers. Thus, the type and amount of data in the WDC's differ from discipline to discipline.

The objects of establishing several World Data Centers for collecting observational data were: (1) to insure against loss of data by the catastrophic destruction of a single center, (2) to meet the geographical convenience of, and provide easy communication for workers in different parts of the world. Each WDC is responsible for: (1) endeavoring to collect a complete set of data in the field or discipline for which it is responsible, (2) safe-keeping of the incoming data, (3) correct copying and reproduction of data, maintaining adequate standards of clarity and durability, (4) supplying copies to other WDC's of data not received directly, (5) preparation of catalogs of all data in its charge, and (6) making data in the WDC's available to the scientific community. The WDC's conduct their operation at no expense to ICSU or to the ICSU family of unions and committees.

World Data Center A

World Data Center A, for which the National Academy of Sciences through the Geophysics Research Board and its Committee on Data Interchange and Data Centers has overall responsibility, consists of the WDC-A Coordination Office and seven subcenters at scientific institutions in various parts of the United States. The GRB periodically reviews the activities of WDC-A and has conducted several studies on the effectiveness of the WDC system. As a result of these reviews and studies, some of the subcenters of WDC-A have been relocated so that they could more effectively serve the scientific community. The addresses of the WDC-A subcenters and Coordination Office are given inside the front cover.

The data received by WDC-A have been made available to the scientific community in various ways: (1) reports containing data and results of experiments have been compiled, published, and widely distributed; (2) synoptic-type data on cards, microfilm, or tables are available for use at the subcenters and for loan to scientists; (3) copies of data and reports are provided upon request.

CONTENTS

0

NOTE:	Tape file name	(in capitals) and	number are gi	iven in brackets	following section names.
	See Appendix B	for a description	of these file	es.	

1.	INTRO	DUCTION [INTRO, 1]	Page 1
2.	DATA	DESCRIPTIONS [DATAXDESCRIP, 3]	2
	2,1	ATTENUATION COEFFICIENTS	2
		2.1.1 Atmospheric Absorption and Scattering vs. Altitude 2.1.2 Attenuation and Scattering vs. Wavelength for Water	
	2.2 2.3 2.4 2.5 2.6 2.7	STANDARD ATMOSPHERES CLOUD DROP SIZE DISTRIBUTIONS: Water and Ice Particles SOLAR SPECTRAL IRRADIANCE SKY SPECTRAL RADIANCE RAYLEIGH COEFFICIENTS: Air REFRACTIVE INDICES	2 3 4 5 5 5
		2.7.1 Aerosols	
		 2.7.1.1 ADP (Ammonium Dihydrogen Phosphate) 2.7.1.2 Aerosol, Synthetic 2.7.1.3 Ammonium Sulphate 2.7.1.4 Barium Fluoride 2.7.1.5 Cadmium Sulfide 2.7.1.6 Calcite 2.7.1.7 Calcium Fluoride 2.7.1.8 Dust 2.7.1.9 Fly Ash (No data files.) 2.7.1.10 Germanium 2.7.1.11 Glass 2.7.1.12 Graphite 2.7.1.13 Gypsum 2.7.1.14 KDP (Potassium Dihydrogen Phosphate) 2.7.1.15 Mascagnite 2.7.1.16 Molydenite 2.7.1.17 Polystyrene Latex 2.7.1.18 Quartz 2.7.1.20 Sapphire 2.7.1.21 Silica 2.7.1.22 Silicon 2.7.1.23 Sodium Nitrate 2.7.1.24 Zinc Sulfide 2.7.2 Air 2.7.4 Liquid Water (includes optical, infrared, and microwave regions) 2.7.4 Liquid Water (includes optical, infrared, and microwave regions) 2.7.4 Liquid Water (includes optical, infrared, and microwave regions)	
	2.8	RELATIVE REFLECTANCE: Ice, Water	14
35	በአጥል ፣	FILE AND COMPUTER TAPE INFORMATION	15
5.	3.1	GUIDE [GUIDE, 4]	15
		 3.1.1 Introduction to Tape Organization 3.1.2 Data File Structure 3.1.3 Deciphering File Names 3.1.4 Unit Notation 3.1.5 Significant Figures 3.1.6 Computer Programs: ATTENCOEF and MICRO 3.1.7 Data Retrieval Example 3.1.8 Data Table Examples 	19

3

		•			Page
	3.2	DATA FI	LE FORMATS [FORM	ATS, 5]	18
		3.2.1	Attenuation Coe	fficients	
			3.2.1.1 3.2.1.2	Atmospheric Water	
		3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7		Distributions Irradiance diance cients: Air	
			3.2.7.1 3.2.7.2 3.2.7.3 3.2.7.4	Aerosols Air Ice (includes microwave region) Liquid H ₂ O (includes microwave region)	
		3.2.8	Relative Reflect	tance: Ice, H ₂ O	
4.	ACKNOWL	EDGMENTS	[THANKS, 6]		22
5.	REFEREN	CES [REF	, 7]		
APPENDIX			es on Atmospherid tape files 0 and	c Handbook Computer Tape, Listed by File Number 3 8]	27
APPENDIX	B: Comp	puter Tap	pe File Descripti	ions [FILEXDESCRIP, 9]	28
APPENDIX				TENCOEF (and Related Subroutines): Atmospheric Defficients [APPENDIXC, 218]	29
APPENDIX				CRO (and Related Subroutines): Select Ice and the Microwave Region [APPENDIXD, 219]	41
APPENDIX	E: List	t of Used	Eul Atmospheric (Constants and Conversion [FACTS, 220]	See Inside Back Cover

,

iv

,

۰.

.

by

V.E. Derr NOAA Environmental Research Laboratories NOAA/R/E 325 Broadway Boulder, Colorado 80303, USA

ABSTRACT: Atmospheric data tables stored on computer tape and available for public use are described in this catalog/manual. These data are largely taken from results published in scientific journals. Data areas cover attenuation coefficients for the atmosphere and H₂O, atmospheric parameters for 1962 standard atmospheres, cloud drop size distributions for water and ice spheres, solar spectral irradiance, sky spectral radiance, Rayleigh mass and volume scattering coefficients and scattering cross section for air, the relative reflectance of ice and saline environmental waters, and refractive indices for liquid water, ice, air, and various atmospheric aerosols. Information in the report includes descriptions of the data (summarized from journal abstracts), information on the range and units of the data parameters, the FORTRAN format statements used to create the data files, and two FORTRAN programs for retrieving select data.

1. INTRODUCTION [INTRO, 1]

During the course of a number of years of work in atmospheric spectroscopy, I compiled several very useful tables of atmospheric data from the literature, and stored these data on computer disk and tape for ready access during theoretical calculations. Often, colleagues borrowed copies of these data, and some provided me with additional data. Invariably they suggested that it might be useful for fellow workers to have access to the data in a user-friendly format accessible by a computer. I resisted these urgings for a long time because the burden of selecting the "best" values, and the most useful and relevant material and assuring the accuracy of the values quoted, is intolerably large for one person aided by even a very competent part-time student. To do the job fully requires a critical review and fine judgement to distinguish between the many published sources of such data. For example, there are at least a dozen tables of refractive indices of water, many of which don't agree. To sit in Solomon-like judgement on these discrepancies requires the devotion of several full careers. These considerations, until recently, blocked any thoughts of publishing this material, and I confined its use to calculations of my own and those of colleagues aware of the pitfalls.

There is, however, a better way, by publishing this "Atmospheric Handbook: Atmospheric Data Tables Available on Computer Tape" as a compromise between fully verified and uncertain values. We make every effort to ensure the faithfulness of the tables to the source and to avoid degradation of interpolated values. If more than one source appears authoritative, both are quoted. Under this compromise, the researcher is advised to use the values cautiously, but by and large a very valuable set of data is provided for researchers in atmospheric radiation. The accuracy of the data can be determined only by reference to the source.

The Atmospheric Handbook exists in two forms: as a bound, paper report and as a computer tape. The report serves as a descriptive catalog/manual for the computer tape; it does not contain complete copies of the atmospheric data tables. Information in the report ranges from descriptions of the data in the tables, summarized from scientific journal abstracts, to information on the range and units of the data parameters, to the FORTRAN format statements used to create the data files. The computer tape version of the Handbook contains all information in the bound report, as well as the data tables themselves. Currently, two programs for accessing certain kinds of data are available in the report as well as on the tape. The computer tape is available through the National Environmental Satellite, Data, and Information Service (NESDIS). There is a charge for copying the tape.

Direct Re	quests To	Direct Questions To:
National Geophysical Data Center NOAA/NESDIS E/GC2 325 Broadway Boulder, CO 80303, USA	Climatological Services Section National Climatic Data Center NOAA/NESDIS E/CC423 Federal Building Asheville, NC 22801, USA	Dr. Vernon Derr NOAA/R/E 325 Broadway Boulder, CO 80303, USA
(303) 497-6136; FTS: 320-6136	(704) 259-0682; FTS: 672-0682	(303)497-6000; FTS: 320-6000

Because a future edition of the handbook is planned, I invite interested users to refer me to any additional data that may be included, and of course note any errors found. Suggestions on more useful formats are welcome. Any definitive reviews of the tables that appear in the literature will be used to discriminate between sources and eliminate less accurate versions.

,

2. DATA DESCRIPTIONS [DATAXDESCRIP, 3]

This section contains brief descriptions of the sources for data found in the Handbook. Each description is preceded by a definition of the data file variables and their ranges and units, as well as a list of the file names (in capital letters).

2.1 ATTENUATION COEFFICIENTS

2.1.1

Atmospheric Absorption (km^{-1}) and Scattering (cm^{-1}) vs. Altitude (0 to 85 km) ATTENHT, AERXCLR, AERXHAZ, MIDIATSUM, MIDIATWIN, SUBARCSUM, SUBARCWIN, TROPIC (all accessed by Program ATTENCOEF)

The tables contain values of attenuation coefficients as a function of altitude for five atmospheric and two aerosol models from McClatchey et al. (1972). The altitude range is \emptyset to 85 km and the radiation wavelength is $\emptyset.6943$ micrometers. Numerical values for the coefficients were computed and then logarithmically interpolated for each atmospheric layer. The aerosol attenuation coefficients are identical for all geographical and seasonal models. If the total attenuation (G) is required, the four coefficients can be summed: G = molecular absorption + molecular scattering + aerosol absorption + aerosol scattering. The tables are accessed by program ATTENCOEF.

2.1.2

Attenuation (m^{-1}) and Scattering (m^{-1}) vs. Wavelength (3.75E-7 to 8E-7 meters) for Water H2OXATTENSCAT

Jerlov (1968) collected the observed attenuation coefficients of Clarke and James (1939) and the theoretical scattering coefficients of LeGrand (1939) for pure water in the range 3.75E-7 to 8E-7 meters. In their experiments Clarke and James found no palpable differences between the attenuances of distilled water and ocean water, and therefore the values for distilled water can be used when attenuation coefficients for salt water are needed.

2.2 STANDARD ATMOSPHERES

Pressure (mb), Temperature (K), and Number Densities (mols cn^{-3}) vs. Altitude (Ø to 100 km) of H₂O, CO₂, O₃, N₂O, CO, CH₄, O₂, and N₂ MLS, MLW, SAS, SAW, TROPICAL, USXSTAN

These tables are taken from the Air Force Geophysics Lab computer code for FSCDATM, Gallery et al. (1981). Data were originally derived from McClatchey et al. (1972). They originate from "Handbook of Geophysics and Space Environments" (Valley, 1965). The six profiles consist of the pressure, temperature, and number densities of H_2O , OO_2 , O_3 , N_2O , OO, CH_4 , O_2 , and N_2 vs. altitude for the following atmospheric types: Tropical (15 deg. N.), Midlatitude Summer (45 deg. N., July), Midlatitude Winter (45 deg. N., January), and the 1962 U.S. Standard Atmosphere.

A draft version of a section of the report on FSCDATM states:

"The water vapor density for the 1962 Standard corresponds to relative humidities of approximately 50% for altitudes up to 10 km, whereas the relative humidity values for the other models tend to decrease with altitude from approximately 80% at sea level to approximately 30% at 10 km. Above 12 km the water vapor number densities of all models but the 1962 Standard are identical and represent volume mixing ratios which reach a minimum of about 6.5 ppmv at 17 km, increase to 30 ppmv at 30 km, then decrease to 10 ppmv at 50 km. For all models, the gases CO_2 , N_2O , CO, CH_4 , O_2 , and N_2 are considered uniformly mixed with volume mixing ratios of 330, 0.28, 0.075, 1.6, 1.095E05, and 7.905E05 ppmv respectively."

In correspondence with us, W.O. Gallery of AFGL commented that the data on which these profiles are based are old. The report continues:

"The stratospheric water vapor concentrations for the six profiles are now known to be too large by a factor of 5 at 30 km. The models may still be considered representative of their respective conditions up to about 50 km for temperature, up to 30 km for ozone densities, and up to the tropopause (approximately 15 km in the Tropics to 8 km in the Arctic) for water vapor."

Two useful recent reports are WMO (1982) and M. Smith (1982). The U.S. Standard Atmosphere for 1976 updates the 1962 Standard for temperature above 50 km and provides revised estimates for the surface concentrations of what was previously termed the "uniformly mixed gases". New values for the volume mixing ratios of CO_2 , N_2O , CO, and CH_4 are 322, 0.27, 0.19, and 1.60 ppmv respectively. The 1976 Standard gives equations for the computation of the number density of individual species. When updated tables are released by AFGL, we plan to incorporate them into the Handbook.

2.3 CLOUD DROP SIZE DISTRIBUTIONS

NOTE: All cloud files contain the number density of drops or ice particles per unit interval $(m^{-3} m^{-1})$. The number density (m^{-3}) in the interval is given by multiplying the number density per unit interval $(m^{-3} m^{-1})$ by the absolute difference between the beginning and ending radius (m).

2.3.1

Number Density of Drops $(m^{-3} m^{-1})$ vs. Radius (meters) CLOUD1 to CLOUD8

Carrier et al. (1967) presented theoretical scattering parameters for eight different water cloud models at 4.88E-7, 6.94E-7, 1.06E-6, 4E-6, and 1.06E-5 meter radiations. These wavelengths, excluding 4E-6, correspond to the monochromatic wavelengths of operationally significant lasers. The authors presented representative cloud drop size distributions and concentrations for major water cloud types, assuming spherical water droplets only, and calculated the optical extinction coefficients for each model using the exact Mie theory. Consequently the calculated optical properties are accurate only for the cloud models used. We calculated data values in the CLOUDI - 8 tables from both tabular and graphed data in Carrier et al. (1965, 1967).

Carrier gives these figures for the concentrations of the drop size distributions:

Туре	File Name	Concentration (number/cm ³)
Stratus I	CLOUD1	464 (458)
Stratocumulus	CLOUD2	350 (370)
Fairweather Cumulus	CLOUD3	300 (157)*
Stratus II	CLOUD4	260 (260)
Cumulonimbus	CLOUD5	72 (63)
Cumulus Congestus	CLOUD6	207 (198)
Nimbostratus	CLOUD7	330 (326)
Altostratus	CLOUD8	450 (461)

*The numbers in parentheses represent the results of calculations we performed on histograms derived from Carrier's figures. The concentration for Fairweather Cumulus, CLOUD3, is different enough that we suggest taking our value as correct for the data as presented.

2.3.2

Number Density of Ice Particles $(m^{-3} m^{-1})$ vs. Radius (1.5E-6 to 7.5E-5 meters) CLOUD9

Schickel (1975) took samplings from fifty-six 1980 publications on droplet distributions of water clouds. CLOUD9 is a sampling for ice fog.

2.3.3

Number Density of Ice Particles $(m^{-3} m^{-1})$ vs. Radius (lE-6 to 5E-5 meters (CLOUD10) and 5E-5 to 5E-4 meters (CLOUD11)) CLOUD10 and CLOUD11

Heymsfield (1975) studied the growth of the ice phase in cirrus uncinus and cirrostratus clouds through aircraft measurements of cloud particle spectra at different altitudes. The temperature range was -14 to -46 degrees. CLOUD10 and CLOUD11 are taken from data for particle spectra taken near the top of a cirrostratus deck. The cirrostratus clouds sampled had their nucleation regions near the top of the clouds; crystals sedimented and grew from this source region near the top to near the base, and then evaporated to the base. The crystal concentrations were about 0.2 cm^{-3} , with 0.01 cm^{-3} longer than 100 micrometers. The mean length of crystals larger than 100 micrometers ranged between 0.2 and 0.5 mm. The ice water content ranged between $0.01 \text{ and } 0.16 \text{ gm}^{-3}$.

2.3.4

Number Density of Ice Particles $(m^{-3} m^{-1})$ vs. Radius (3E-6 to 1.33E-5 meters) CLOUD12

Heymsfield and Jahnsen (1974) sampled thin, nearly invisible tropopause cirrus layers by aircraft over the continental United States and Pacific Ocean. In the data set used, samplings took place in a thin cirrus layer between 55,000 and 52,000 ft topped at the tropopause, near the Marshall Islands in the Pacific in December of 1973. There were no clouds below this level. There was a double tropopause, one at 55,000 ft and a weak one between 53,000 and 54,000 ft. The ice water content increased from the cloud top at the tropopause to 300 feet below the tropopause, decreased to 54,000 ft, increased in the second tropopause to 53,500 ft, and evaporated below. The "source" region of the ice crystals was at the cloud top where there were high concentrations of small crystals; there was a secondary source region at 53,800 ft. An SRI lidar also indicated two cloud layers, one topped at 55,000 ft, the other at 53,800 ft. 2.3.5

Number Density of Ice Particles $(m^{-3} m^{-1})$ vs. Radius (3.97E-7 to 3.97E-5 meters) CLOUD13

CLOUD13 contains ice size distributions for cirrus clouds at 13.3 km as reported by Kraus and Barnes (1976b). The freezing level was between 4.6 and 4.9 km, and tropopause was at approximately 15.5 km.

2.3.6

Number Density of Ice Particles $(m^{-3}\ m^{-1})$ vs. Radius (3.97E-7 to 2E-4 meters) CLOUD14

CLOUD14 contains the ice size distributions for cirrus clouds at 12.5 km. They represent Kraus and Barnes's (1976a) best estimate of the worst case situation along their missile trajectory. The freezing level was near 4.9 km, and the tropopause was at 15.8 km.

2.3.7

```
Number Density of Ice Particles (m^{-3} m^{-1}) vs. Radius (3.97E-7 to 1.58E-4 meters) CLOUD15
```

Barnes (1977) reported ice size distributions for cirrus clouds at approximately 15 km.

2.3.8

Number Density of Ice Particles $(m^{-3} m^{-1})$ vs. Radius (8.05E-6 to 5.64E-4 meters) CLOUD16

CLOUD16 was taken from Glass and Varley's (1978) report of data collected during a morning flight through a layer of thin cirrus in December 1977 by AFGL cloud physics research aircraft over northern Arizona and New Mexico. The aircraft flew at an altitude of approximately 7 km MSL and the ambient temperature was -25 degrees C. The 500-mb synoptic chart on this day indicated a weakening ridge pattern over this region.

2.3.9

Number Density of Ice Particles $(m^{-3} m^{-1})$ vs. Radius (1E-6 to 8.6E-4 meters) CLOUD17

Varley and Brooks (1978) reported data from a February 1978 cirrus sampling flight in Albuquerque, New Mexico, aimed at acquiring information on the typical type and concentration of ice particles in cirrus clouds.

2.3.10

Number Density of Ice Particles $(m^{-3} m^{-1})$ vs. Radius (lE-6 to 3.1E-5 meters) CLOUD18

CLOUD18 is a cirrus cloud distribution synthesized from several sources by Dr. Vernon Derr of NOAA/ERL to be a small particle distribution (<31 micrometers) for test purposes.

2.4 SOLAR SPECTRAL IRRADIANCE*

2.4.1

Solar Spectral Irradiance (watts $m^{-2} m^{-1}$) vs. Wavelength (1.27E-7 to 1E-4 meters) FLUX1

Thekaekara (1972) presented results of experiments made by NASA Goddard Space Flight Center on the solar constant and solar spectrum from a research aircraft at 11.6 km. In the wavelength range 3E-7 to 1.5E-5 meters these values were based mainly on measurements made from the research aircraft. The instruments used were a Perkin-Elmer model 112 spectrometer with a lithium-based fluoride window, a Leiss double quartz prism monochrometer, a filter radiometer, a polarization type interferometer and, for the infrared range beyond 4 micrometers, a Michelson type interferometer. In the wavelength range 3E-7 to 2.6E-6 meters an independent set of data is available from the Eppley-JPL measurements, made with a filter radiometer during several series of flights. The wavelength range covered is 1.2E-7 to 1E-4 meters. Thekaekara writes, "...the spectral irradiance is determined in narrow wavelength ranges and the integral energy is computed to give the solar constant. The solar constant...is the energy due to the sun incident on unit area exposed normally to the sun's rays at the average sun-earth distance in the absence of the earth's atmosphere. The solar spectral irradiance is the distribution of this energy as a function of wavelength."

The data in FLUX1 are reprinted from Thekaekara (1972) with permission from Photonics Spectra, copyright holder.

*NGDC holds NIMBUS and SMM satellite solar irradiance data.

2.4.2 Solar Spectral Irradiance (watts m⁻² m⁻¹) vs. Wavelength (2.5E-10 to 1.95E-2 meters) FLUX2

From Smith and Gottlieb (1974), the tables in FLUX2 represent solar irradiance data as derived from various sources by the authors, in the wavelength range 2.5E-10 to 1.95E-2 meters. Smith and Gottlieb used the formula

$$H = \pi [(r^2)/(R^2)]F = 6.80 \times (10^{-5})F$$

to derive the solar irradiance (the solar flux at 1 AU) from the total solar flux, where H is the solar irradiance, F is the total solar flux, r is the radius of the sun, and R is 1 AU. "AU" is defined as "Astronomical Unit", the mean distance from the earth to the sun, where 1 AU = 1.49E11 meters.

The data in FLUX2 are reproduced from Smith and Gottlieb (1974) with permission from D. Reidel Publishing, copyright holder.

2.5 SKY SPECTRAL RADIANCE

NOTE: Sky spectral radiance is the power falling on area A per unit optical aperture (steradians), per unit wavelength range.

Sky Spectral Radiance (watts $m^{-2} m^{-1}$) vs. Wavelength (3.1E-7 to 7.2E-7 meters) SKYBAC10, SKYBACSL

SKYBACSL and SKYBAC10 are files of the spectral radiance of the sky at sea level and at 10,000 feet. Walter Clark (1969) designed, built, and calibrated a spectrophotometer that was used at sea level and carried in an aircraft to collect the data. The data are for the wavelength region 3.1E-7 to 7.2E-7 meters. Clark reports that error computations of sky luminance using the root mean square method resulted in 6.5% to 11.5% error depending upon the signal amplitudes, and thus the spectral radiance absolute accuracy probably varies between 13% and 16%.

2.6 RAYLEIGH COEFFICIENTS, AIR

Mass Scattering Coefficient (m² kg⁻²), Volume Scattering Coefficient (m⁻¹), and Scattering Cross Section (m²) vs. Wavelength (2E-7 to 2E-5 meters) for Air MASSXSCAT, VOLXSCAT, RAYXSCATCROSS

Penndorf (1957) calculated the real refractive indices of standard air based on Edlen's formula for the wavelength range 2E-7 to 2E-5 meters (2.7.2). Computations of the Rayleigh scattering cross sections and mass and volume scattering coefficients were tabulated in the same range. Standard air is defined as dry air containing 0.03% CO₂ by volume at normal pressure 760 nm Hg (=1013.25 mb) and having an air temperature of 15 degrees C. When calculating the refractive indices Penndorf made allowances for the influence of temperature and pressure. Penndorf used a standard textbook formula in figuring the Rayleigh scattering coefficient, and advised that its accuracy is correct to about +/- 10%; his computations for the coefficient can be considered correct to four figures. Refer to the original article for complete discussions of all formulas used.

2.7 REFRACTIVE INDICES

NOTE: In instances where one experiment resulted in data for more than one substance, only one data description is given. It contains parenthesized numerical references to the location of the data for other substances. The aerosol indices are alphabetized according to substance, and then listed according to the file name prefixes "RF", "RFI", or "RFC", in that order. The particular substance, wavelength range (meters), and refractive index type (real, imaginary, or complex, all dimensionless) are as indicated preceding the filenames.

2.7.1 Aerosols

2.7.1.1 ADP (Ammonium Dihydrogen Phosphate)

Real Refractive Index vs. Wavelength (2E-7 to 2E-6 meters) RFXADPO, RFXADPE

Zernike (1964) measured the real refractive indices of ammonium dihydrogen phosphate (ADP) and potassium dihydrogen phosphate (KDP, 2.7.1.14) in air at wavelengths between 2E-7 and 2E-6 meters, at temperatures ranging from 24.6 to 24.9 degrees C. The accuracy of the indices is +/- 3E-5 or better. Zernike measured the indices using the method of known incidence used by F. Rydberg (1828) and Tilton et al. (1949). The ADP and KDP prisms had angles of approximately 61.5 and 60 degrees respectively. Zernike also included the real refractive indices of fused silica (2.7.1.21) for ten wavelengths between 3.65E-7 and 5.78E-7 meters. Complex Refractive Index vs. Wavelength (4E-7 to 1.5E-5 meters) RFCXSYNAER

Ivlev and Popova (1973) studied the optical constants of sulfates, silicates, nitrates, metal oxides, and minerals containing the cation $[NH_4]$ in the wavelength range 4E-7 to 1.5E-5 meters. Missing data on the complex indices were calculated by the Kramers-Kronig method from the transmission and reflectance spectra.

The authors collected and analyzed data on the optical constants and other optical characteristics of minerals that are present in the materials of atmospheric aerosols, and the variations of these characteristics on transition from one mineral of a given class to another, within the given wavelength region. On the basis of available observational data on the chemical composition of aerosol particles in the surface layer of the atmosphere, a model was constructed for the matter of the atmospheric-aerosol dispersed phase, and effective values of the complex index were calculated assuming the absence of free water. It was assumed that all the chemical compounds are uniformly distributed in the material of aerosol particles of different sizes. The refractive index values can be recommended for calculations of the optical characteristics of dry atmospheric aerosols.

2.7.1.3 Ammonium Sulphate

2.7.1.3.1

Complex Refractive Index vs. Wavelength (9.3E-6 to 9.5E-6 meters) RFCXAMSP1 to RFCXAMSP3

Jennings (1981) applied an "attenuated total reflectance" goniometric system to the measurement of complex refractive indices of aerosol constituents at CO₂ laser wavelengths. He demonstrated the reliability of the system through a comparison of his experimental and previously reported values. Jennings chose water (2.7.4.4) and annonium sulphate solutions for these checks. Water was triply distilled, and any annonia or carbon dioxide was removed. The final sample was stored under argon. Ammonium sulphate solutions were prepared from finely ground ammonium sulphate powder, and their molality was determined gravimetrically. Our data files are for the three molalities 1.6, 2.4, and 3.2, (as indicated by the first line of the individual files). Polystyrene latex particles (2.7.1.17) with mean diameter 9.1E-8 meters were used in suspensions ranging from 5% to 20% by weight. These percentages correspond to the percentage values in the first line of each data file. From these suspension values, Jennings used the Maxwell Garnet mixture rule and an extrapolation scheme to derive the refractive index (file RFCXPLTX1).

2.7.1.3.2

Complex Refractive Index vs. Wavelength (4.05E-7 to 4E-5 meters) RFCXAMSP4

Toon et al. (1976) reviewed techniques for finding optical constants and assessed their accuracy. From these sources they compiled the optical constants of sodium chloride (2.7.1.19) and aluminum oxide (2.7.1.20.5) in the wavelength ranges 2E-7 to 1E-4 and 2E-7 to 3E-4 meters respectively. The constants of ammonium sulphate were derived partly from values quoted and partly from their own measurements, for the wavelength range 4.05E-7 to 4E-5 meters.

2.7.1.4 Barium Fluoride

Real Refractive Index vs. Wavelength (4.05E-7 to 7.7E-7 meters) RFXBARF1 to RFXBARF3

Malitson (1964) presented data from a 1944 National Bureau of Standards experiment on the real refractive indices of barium fluoride for nine visible wavelengths in the range 4.05E-7 to 7.68E-7 meters at 15, 35, and 55 degrees C. The uncertainty of these index measurements was estimated at 3E-6. Malitson included data from a 1958 experiment in which he determined values for the real refractive index of a commercially grown barium fluoride prism with refracting angle near 6l degrees. Measurements were made at temperatures near 25 degrees C for 46 calibrated wavelengths of various emission sources and absorption bands from 2.66E-7 meters in the ultraviolet to 1.03E-5 meters in the infrared. Malitson claims that an average absolute residual of 1.9E-5 indicates that values for the index may be interpolated to five decimal places.

```
2.7.1.5 Cadmium Sulfide
```

2.7.1.5.1

Real Refractive Index vs. Wavelength (5.12E-7 to 1.4E-6 meters) RFXCDS10, RFXCDS1E

Bieniewski and Czyzak (1963) reported their experimental data for the real refractive index, ordinary and extraordinary rays, of zinc (2.7.1.24.1) and cadmium sulfide in the wavelength range 3.6E-7 to 1.4E-6 meters (ZnS) and 5.12E-7 to 1.4E-6 meters (CdS).

2.7.1.5.2 Real Refractive Index vs. Wavelength (5.5E-7 to 1.4E-6 meters) RFXCDS20, RFXCDS2E

Czyzak et al. (1957) determined the real refractive index of single synthetic zinc sulfide (2.7.1.24.2, ordinary ray) and cadmium sulfide crystals (ordinary and extraordinary rays) in the wavelength range 4.4E-7 to 1.4E-6 meters (ZnS) and 5.5E-7 to 1.4E-6 meters (CdS). The prisms used were cut to angles between 10 and 15 degrees.

2.7.1.6 Calcite

Complex Refractive Index vs. Wavelength (2E-7 to 6E-6 meters) RFCXCALCE, RFCXCALCO

Ivlev and Popova (1974) examined the optical constants of various chemical compounds constituting the atmospheric aerosol including calcite, graphite (2.7.1.12), gypsum (2.7.1.13), mascagnite (2.7.1.15), guartz (2.7.1.18.5), sapphire (2.7.1.20.4), and sodium nitrate (2.7.1.23). In the original data tables, Ivlev and Popova left large gaps between data entries (which correspond to "-1" in the Handbook tables), with no directions for proper interpretation. With the exception of three entries for the real index of graphite at 1.1E-6, 1.2E-6, and 1.9E-6 meters, for which the authors entered "?", there are at least two ways in which to interpret the gaps: 1) values were out of range; 2) values did not change from the last entry before the gap, until the next cited index. Additionally, the authors seemingly distinguished between the value of " 10^{-X} ", where X is any integer, and "1 x 10^{-X} " with the same value for X; we chose not to draw a distinction between the two representations.

The data in RFCXCALCE and any other associated data files are reproduced from Ivlev and Popova (1972) with permission from Plenum Publishing Corporation, copyright holder.

2.7.1.7 Calcium Fluoride

Real Refractive Index vs. Wavelength (4.05E-7 to 7.68E-7 meters) RFXCAF1 to RFXCAF3

Malitson (1963) reproduced real refractive index data from experiments done at the National Bureau of Standards in 1944. The indices were determined for two samples of synthetic fluorite prisms for nine visible wavelengths (4.05E-7 to 7.68E-7 meters) at temperatures of 15, 35, and 55 degrees C. Malitson states that the real refractive index values of both prisms were averaged. The values were taken from previously published reports by Stockberger and Early (1944) and Stockberger (1949). Malitson states that the uncertainty of these index measurements is estimated at 2E-6.

2.7.1.8 Dust

2.7.1.8.1

Imaginary Refractive Index vs. Wavelength (3E-7 to 1.7E-6 meters) RFIXDUST1 to RFIXDUST10

Lindberg et al. (1976) determined the imaginary part of the complex refractive index for dust samples from the Panama Canal Zone, Germany, France, Denmark, the Netherlands, Great Britain, Israel, and various locations in the United States in the wavelength range 3E-7 to 1.7E-6 meters. The samples were collected by air filtration using ultra-thin cellulose membranes. Their values for the imaginary index are dependent on the assumption that the specific gravity of the particulate matter is 2.2. The authors claim their values for the index are an underestimate by some amount less than a factor of 2.

Transmission spectroscopy examination of each sample led to the following profiles of sample composition: samples from Europe were often dominated by ammonium sulphate and some strong spectrally broad absorber such as free carbon which led to a relatively high imaginary index in the visible spectrum. Samples from less populated desert areas in the U.S. and Israel showed the presence of silicate clay minerals, guartz, calcite, and gypsum, and proportionately less annonium sulfate and carbon. Samples from industrial or high population density areas had a significantly higher imaginary index than those from more remote desert locations. This presumably was because urban samples contained more free carbon from various man-made combustion sources, whereas desert areas had a stronger soil component which tended to reduce the overall imaginary index.

2.7.1.8.2

Complex Refractive Index vs. Wavelength (3E-7 to 1.7E-6 meters) RFCXDUST1 to RFCXDUST3

These tables (Lindberg, 1977) contain imaginary index data from experiments at White Sands Missile Range in New Mexico in the wavelength range 3E-7 to 1.7E-6 meters. Dust from three geographic locations was measured by diffuse reflectance methods. The dry material as collected on cellulose ester membrane filters was dissolved in acetone and centrifuged to recover the particulate matter. The tables contain infrared laser line imaginary index measurements Lindberg obtained using a spectrophone technique. Lindberg suggests 1.55 as a reasonable estimate for the real refractive index in the 3E-6 to 5E-6 meter region. However the silicate absorption band near the 10E-6 meter region makes both parts of the index strongly wave dependent. (As an example of this, Lindberg suggests an examination of the index values in Peterson & Weinman - see 2.7.1.18.4: "Quartz": RFCXQUA1+).

2.7.1.9 Fly Ash

2.7.1.9.1

No data files.

In September 1970 (Grams et al., 1972) the National Center for Atmospheric Research (NCAR) obtained data on the vertical distribution of particulate material over Boulder, Colorado. Particles from a layer of matter at approximately 13 km differed from normal tropospheric particles. NCAR assumed the particles were fly ash created by forest fires in California during the previous week. Assuming the real part of the refractive index to be 1.55, the imaginary part was estimated at 0.044 + - 0.001. An analysis of errors due to the expected statistical variability of the number of particles counted and the combined instrumental and measurement errors led to an estimate of approximately 40% error. By considering that the error results in a factor of 1.4 uncertainty, the error in the measurement of the imaginary index is 0.011.

2.7.1.9.2

No data files.

P.B. Russell et al. (1974) measured the angular variation and size distribution of the intensity of light scattered from a collimated beam by airborne soil particles 1.5 meters above the ground. From their measurements they derived an estimate of the complex index of refraction of the soil particles. For the real refractive index, the value 1.525 was taken as representative. By applying Mie scatter theory to each of the observed distributions of particle size, the expected angular variation of the intensity of the scattered light was calculated for a fixed value of the real index and a wide range of values of the imaginary index. For each set of simultaneous measurements the representative value for the imaginary index was taken to be that value which provided the best fit to the experimental data. The upper limit of the value of the imaginary index for the airborne soil particles studied was determined to be 0.005 with an overall uncertainty factor of 2.3.

2.7.1.9.3

No data files.

Wyatt (1980) examined several hundred single fly ash particles. More than 40 particles were suspended in a controlled high humidity environment to permit detailed light scattering measurement. Computerized analyses of the light scattering data from six typical ash particles showed considerable refractive index variation from particle to particle. Refractive indices, both real and complex, were observed spanning the range 1.48 to 1.57 (real) and 0 to 0.1 (imaginary). The accuracy of the values was +/- 0.01 for the real parts and +/- 0.002 for the imaginary.

2.7.1.10 Germanium

2.7.1.10.1

Real Refractive Index vs. Wavelength (2.55E-6 to 1.24E-5 meters) RFXGERM1 to RFXGERM4

Icenogle et al. (1976) examined the real refractive indices of silicon (2.7.1.22.1, 2.55E-6 to 1.03E-5 wavelength meters) and germanium (2.55E-6 to 1.24E-5 wavelength meters). They stated their errors to be about +/-6E-4 for germanium and +/-3E-4 for silicon. The indices for germanium were taken at temperatures of 297, 275, 204, and 94 kelvins. The indices for silicon were taken at 296, 275, 202, and 104 kelvins.

2.7.1.10.2

Real Refractive Index vs. Wavelength (2.06E-6 to 1.65E-5 meters) RFXGERM5

Salzburg and Villa (1957) determined data for the infrared real refractive index for single crystal germanium, silicon (2.7.1.22.2), and modified selenium glass (2.7.11.2), at about 27 degrees C. The respective wavelength ranges are 2.06E-6 to 1.6E-5, 1.36E-6 to 1.1E-5, and 1.01E-6 to 1.1E-5, all in meters. They estimate their accuracy of the index measurements to be +/-2 in the fourth decimal place.

2.7.1.11 Glass

2.7.1.11.1

Real Refractive Index vs. Wavelength (3.65E-7 to 2.6E-6 meters) RFXGLASS1 to RFXGLASS17

Kingslake and Conrady (1937) measured the real refractive indices of 17 different types of 60-degree prism Bausch & Lomb and Parra-Mantois optical glass, in the wavelength range 3.65E-7 to 2.6E-6 meters. They cite their indices as correct to five or six in the fifth decimal place.

NOTE: The Kingslake article contained only the data for glasses 1 through 11. The remainder of the Kingslake-Conrady data was reprinted by Herzberger (1942), where we obtained it. Note that Dr. Herzberger found some minor errors in the far red and near infrared region of the spectrum. These errors resulted from Kingslake's use of some early and slightly inaccurate data on the temperature coefficient of the refractive index of rock salt in calibrating the wavelength scale of his refractometer.

2.7.1.11.2

Real Refractive Index vs. Wavelength (1.01E-6 to 1.1E-5 meters) RFXGLASS18, RFXGLASS19

See 2.7.1.10.2: "Germanium": RFXGERM5.

2.7.1.11.3

Real Refractive Index vs. Wavelength (5.77E-7 to 1.19E-5 meters) RFXGLASS20

Rodney et al. (1958) determined the real refractive indices of an arsenic trisulfide prism with refracting angle of 25 degrees in the wavelength range 5.77E-7 to 1.19E-5 meters. The sample was measured at temperatures near 19, 25, and 31 degrees C. The averaged thermal coefficients of the refractive index were used to reduce all data to 25 degrees C.

2.7.1.11.4

Complex Refractive Index vs. Wavelength (4.8E-7 to 6.9E-7 meters) RFCXGLASS1

The data represent the refractive indices for Corning Glass code 0080/0081 glass in the wavelength range 4.8E-7 to 6.9E-7, as taken from correspondence with Herbert Hoover of Corning Glass Works in Corning, New York. Hoover suggests the best guess for the real refractive index at 6.943E-7 meters is 1.505 +/- 0.003. The large uncertainty allows for the fact that normal variations in manufacturing are occasionally this large. In case the index must be known closer than 0.001, consideration must be given the state of annealing, because rapidly cooled glass has a lower index than well-annealed glass.

Hoover estimates an absorption coefficient for code 0080 glass (having about 0.04% total iron) of 0.14 cm^{-1} in determining refractive indices. He proposes this as a safe upper bound. It should be noted that a substantially clear glass with dissolved iron as a colorant has a smaller spectral absorption coefficient near the middle of the wavelength range (5.5E-7 to 6E-7). Hoover advises if for your use you cannot assume a constant absorption coefficient over the 4.8E-7 to 6.943E-7 meter range, you can make a second approximation by assuming equal values at each end and a value one-half as large at 5.75E-7, and interpolating on a smooth curve through the three points for other values. Since we used the figures derived from an absorption coefficient of 0.14 cm^{-1} for 6.943E-7, all of the other estimates represent upper bounds.

2.7.1.12 Graphite

Complex Refractive Index vs. Wavelength (2.5E-7 to 6E-6 meters) RFCXGRAPH

See 2.7.1.6: "Calcite".

2.7.1.13 Gypsum

Complex Refractive Index vs. Wavelength (2E-7 to $6E-6\ meters)$ RFCXGYPS

See 2.7.1.6: "Calcite".

2.7.1.14 KDP (Potassium Dihydrogen Phosphate)

Real Refractive Index vs. Wavelength (2E-7 to 2E-6 meters) RFXKDPO, RFXKDPE

See 2.7.1.1: "ADP".

2.7.1.15 Mascagnite

Complex Refractive Index vs. Wavelength (2E-7 to 2E-6 meters) RFCXMASCAG

See 2.7.1.6: "Calcite".

Complex Refractive Index vs. Wavelength (3.3E-4 to 5E-4 meters) RFCXMOLYB $\ensuremath{\mathsf{R}\mathsf{FCXMOLYB}}$

Meyer (1926) gave the averaged results of experiments which determined the complex refractive index of molybdenite for nine wavelengths in the range 3.3E-4 to 5E-4 meters. Observations were made at various angles of incidence for the same wavelength, (65, 70, and 76 degrees) and averaged. Meyer reported that individual observations varied about 5% from the average.

2.7.1.17 Polystyrene Latex

Complex Refractive Index vs. Wavelength (9.3E-6 to 1.06E-5 meters) RFCXPLTX1 to RFCXPLTX5

See 2.7.1.3.1: "Ammonium Sulphate": RFCXAMSP1.

2.7.1.18 Quartz

2.7,1.18.1

Real Refractive Index vs. Wavelength (4.96E-5 to 4.95E-4 meters) RFXQUALO, RFXQUALE

Russell and Bell (1967) obtained the real refractive index of crystal quartz in the wavelength range 4.96E-5 to 4.95E-4 meters, with the asymmetric Fourier-Transform method. The extrapolated, zero-frequency real refractive indices are 2.1062 (ordinary), and 2.1538 (extraordinary) with an experimental uncertainty of $\pm/-0.001$.

The total, estimated probable error in the measured values contained in the data table is +/- 0.001, except at frequencies less than 25 cm⁻¹ and greater than 175 cm⁻¹, where, the authors claim, the error can be somewhat greater.

2.7.1.18.2

Real Refractive Index vs. Wavelength (1.6E-4 to 3.49E-3 meters) RFXQUA2

Laikin (1961) measured the real refractive index of a 30-degree synthetic quartz prism for the ordinary ray, in the wavelength range 1.6E-4 to 3.49E-3 meters, at 47 degrees F. The indices were corrected to air. Laikin reported the accuracy of the indices good to 6E-5.

2.7.1.18.3

Real Refractive Index vs. Wavelength (1.44E-7 to 2.31E-7 meters) RFXQUA30, RFXQUA3E

Chandrasekharan and Damany (1968) reported the measurements of the ordinary and extraordinary real refractive indices of synthetic quartz in the vacuum ultraviolet in the wavelength range 1.44E-7 to 2.31E-7 meters as deduced from the determination of the orders of interference fringes in a thin parallel plate. The ordinary and extraordinary channeled spectra were obtained by interference in transmission and recorded at room temperature. The authors estimate the absolute error in the indices to be less than 0.001.

2.7.1.18.4

Complex Refractive Index vs. Wavelength (7.68E-7 to 3.6E-5 meters) RFCXQUALO, RFCXQUALE

Peterson and Weinman (1969) tabulated the complex indices of quartz in the wavelength range 7.7E-7 to 3.6E-5 meters. An ensemble of spherical dust particles was utilized in conjunction with Mie theory to determine the extinction coefficient and other optical properties. The data in Peterson and Weinman were originally collected by Spitzer and Kleinman (1961) at a temperature of 24 degrees C. Wavelengths shorter than 5E-6 meters were compiled by D.E. Gray (1963).

2.7.1.18.5

Complex Refractive Index vs. Wavelength (5E-7 to 6E-6 meters) RFCXQUA20, RFCXQUA2E

See 2.7.1.6: "Calcite".

2.7.1.18.6

Complex Refractive Index vs. Wavelength (1E-7 to 1.65E-7 meters) RFCXQUA3, RFCXQUA4

Lamy (1977) gave the near-normal incidence reflectance measurements (complex) of crystal and fused quartz (ordinary ray) in the 1E-7 to 1.65E-7 meter wavelength interval.

2.7.1.19 Salt

Complex Refractive Index vs. Wavelength (2E-7 to 1E-4 meters) RFCXSALT

See 2,7,1.3,2: "Ammonium Sulphate": RFCXAMSP4.

2.7.1.20 Sapphire

2.7.1.20.1

Real Refractive Index vs. Wavelength (2.54E-7 to 6.91E-7 meters) RFXSAPPH10, RFXSAPPH1E

Jeppeson (1958) measured the ordinary and extraordinary real refractive indices for synthetic sapphire at 24 degrees C in the wavelength range 2.54E-7 to 6.91E-7 meters. He reports that between 4E-7 and 6.9E-7 meters the measurements are good to about four parts in the fifth decimal place. This error increases towards the violet.

2.7.1.20.2

Real Refractive Index vs. Wavelength (2.65E-7 to 5.58E-6 meters) RFXSAPPH2

Malitson (1962) measured the real refractive index of a synthetic sapphire prism, with reflecting angle near 40 degrees, at 46 wavelengths from 2.65E-7 to 5.58E-6 meters at controlled room temperatures near 24 degrees C.

2.7.1.20.3

Real Refractive Index vs. Wavelength (RFXSAPPH3: 2.65E-7 to 4.25E-6, RFXSAPPH4 - 6: 4.05E-7 to 7.07E-7 meters) RFXSAPPH3 to RFXSAPPH6

Malitson et al. (1958) collected data on the real refractive indices of a synthetic sapphire prism, for the ordinary ray. The indices in the ultraviolet and infrared (2.65E-7 to 4.26E-6 meters) were measured at controlled room temperatures near 19 and 24 degrees C. In the visible region (4.05E-7 to 7.07E-7 meters) measurements were made at three temperatures near 17, 24, and 31 degrees C.

2.7.1.20.4

Complex Refractive Index vs. Wavelength (2E-7 to 6E-6 meters) RFCXSAPPH1

See 2.7.1.6: "Calcite".

2.7.1.20.5

Complex Refractive Index vs. Wavelength (RFCXSAPPH20: 2E-7 to 3.3E-4, RFCXSAPPH2E: 9E-6 to 3.3E-4 meters) RFCXSAPPH20, RFCXSAPPH2E

See 2.7.1.3.2: "Armonium Sulphate": RFCXAMSP4.

2.7.1.21 Silica

Real Refractive Index vs. Wavelength (3.65E-7 to 1.53E-6 meters) RFXSILICA $\ensuremath{\mathsf{RFXSILICA}}$

See 2.7.1.1: "ADP".

2.7.1.22 Silicon

2.7.1.22.1

Real Refractive Index vs. Wavelength (2.55E-6 to 1.03E-5 meters) RFXSILIC1 to RFXSILIC4

See 2.7.1.10.1: "Germanium": RFXGERM1.

2.7.1.22.2

Real Refractive Index vs. Wavelength (1.36E-6 to 1.1E-5 meters) RFXSILIC5

See 2.7.1.10.2: "Germanium": RFXGERM5.

2.7.1.23 Sodium Nitrate

Real Refractive Index vs. Wavelength (4E-7 to 7E-7 meters) RFXSODNITO, RFXSODNITE

See 2.7.1.6: "Calcite".

2.7.1.24 Zinc Sulfide

2.7.1.24.1

Real Refractive Index vs. Wavelength (3.6E-7 to 1.4E-6 meters) RFX2NS10, RFX2NS1E

See 2.7.1.5.1: "Cadmium Sulfide": RFXCDS1+.

2.7.1.24.2

Real Refractive Index vs. Wavelength (4.4E-7 to 1.4E-6 meters) RFXZNS2

See 2.7.1.5.2: "Cadmium Sulfide": RFXCDS2+.

2.7.2 Air

Real Refractive Index vs. Wavelength (2E-7 to 2E-5 meters) RFXAIR+ (N30,N15,0,15,30)

See 2.6: Rayleigh Coefficients, Air.

2.7.3 Ice

2.7.3.1

Complex Refractive Index vs. Wavelength (9.5E-7 to 1.52E-4 meters) RFCXICE1

Irvine and Pollack (1968) critically reviewed existing literature on the absorption coefficient and reflectivity of water (2.7.4.5) and ice in the infrared, and chose best values for the complex index of refraction for wavelengths in the range 9.5E-7 to 1.5E-4 meters.

2.7.3.2

Complex Refractive Index vs. Wavelength (2E-6 to 3.3E-5 meters) RFCXICE2

Schaaf and Williams (1973) measured the normal-incidence spectral absolute reflectance of ice at -7 degrees C in the wavelength range 2E-6 to 3.3E-5 meters (2.8.1). They employed a Kramers-Kronig phase-shift analysis of the measured spectral reflectance to provide values of the real and imaginary parts of the refractive index.

2.7.3.3

Lomplex Refractive Index vs. Wavelength (1.25E-6 to 3.3E-4 meters)
RFCXICE3

Bertie et al. (1969) measured the absorbance of several samples of Ice Ih at 100 K in the wavelength range 1.25E-6 to 3E-4 meters, and scaled it to that of a particular film of unknown thickness. They obtained the complex index, permittivity, and the normal incidence reflectivity from the absorptivity and from Kramers-Kronig relations.

2.7.3.4

Complex Refractive Index vs. Wavelength for Ice, Microwave Range. See 3.2.7.3: "Data File Formats" for wavelength ranges.

RFICEM+ (N50,N30,N10,0) (accessed by program MICRO)

(Note that additional microwave ice refractive index data were acquired after the completion of program MICR0, and thus are not available to the user through the program. See 2.7.3.6.)

Program MICRO handles microwave refractive indices for water and ice as a function of wavelength at different temperatures, using data taken from the following sources:

Ryde and Ryde (1945) found values for the complex refractive index of ice in the millimeter and microwave region using a combination of the Debye formula and constants taken from Saxton (1945) and Dunsmuir and Lamb (1945).

Lane and Saxton (1952) measured the refractive index of water at 6.2 micrometers, 1.24 cm, and 3.21 cm over the temperature range -10 to 50 degrees C. They used the Debye formula, as well as a method based on the fact that the rate of attenuation of radio frequency energy along a wave guide filled with the liquid is dependent upon both the absorption coefficient and the refractive index when the guide is operated near to cut-off conditions. The authors believe their measurements to be accurate to about +/-1%.

Collie et al. (1948) measured the dielectric constant and loss angle of water and heavy water at widely separated wavelengths in the region of anomalous dispersion. In addition to the Debye formula, they used a method involving the observation of the attenuation in transmission through wave guides of differing cross-sectional dimensions containing the liquid.

The data taken from Collie et al. (1948) are reproduced with permission from the Institute of Physics, copyright holder.

Deirmendjian (1963) calculated the complex index for water and ice at two temperatures by means of the Debye formula.

2.7.3.5

Complex Refractive Index vs. Wavelength (4.43E-8 to 1.67E-4 meters) RFCXICE4

Warren (1984) compiled the optical constants of Ice Ih for temperatures within 60 degrees of the melting point in the wavelength range 4.43E-8 to 1.67E-4 meters. The imaginary part of the complex index of refraction is obtained from measurements of spectral absorption coefficients; the real part is computed to be consistent with the imaginary part by use of known dispersion relations.

Warren states that the compilation of the imaginary part requires subjective interpolation in the near ultraviolet and microwave, a temperature correction in the far-infrared, and a choice between two conflicting sources in the near-infrared.

Warren advises that for intermediate wavelengths not given in the table one should interpolate the real index linearly in the log of the wavelength and the log of the imaginary index linearly in the log of the wavelength.

2.7.3.6

Complex Refractive Index vs. Wavelength (1.67E-4 to 8.6 meters) RFCXICE5 to RFCXICE8

Warren (1984) found the complex refractive indices of Ice Ih for four temperatures: -1, -5, -20, and -60 degrees C, in the wavelength range 1.67E-4 to 8.6 meters. For intermediate wavelengths Warren advises interpolating the real index linearly in the log of the wavelength, the log of the imaginary index linearly in the log of the wavelength, the real index linearly in the log of the imaginary index linearly in the temperature. See also 2.7.3.5.

2.7.4 Liquid Water

2.7.4.1

Complex Refractive Index vs. Wavelength (5.46E-7 to 2.53E-5 meters) RFCXH2O1

Data in this table were compiled from various experiments by Zuev et al. (1974) in the 5E-7 to 2.53E-5 meter wavelength interval for pure water at 18 to 20 degrees C. In the original data tables, Zuev left gaps between numerous data entries; in preparing RFCXH2O1, a cubic interpolation routine was used to approximate these missing data values. In the event that finer accuracy is needed, the real refractive indices at the following wavenumbers (cm^{-1}) should be modified using the measured real indices of the wavenumbers that bound these ranges with a more precise interpolation method: 18100-17550, 17200-16700, 16450-16350, 16200-16000, 15800-15700, 15500-15100, 14900, 14600, 14300, 14100, 13850-13550, 13300-13150, 12900-12650, 12400-12150, 11950, 11700, 11450, 11200, 10900, 10650, 10350, 10100, 9800, 9500, 9190, 8000, 8600, 8320, 8060, 7800, 7540, 7275, 7100, 6660, 6470, 6200, 5880, 5635, 5602, 5376, accuracy is needed in a wavenumber range including 18100-17550, take the wavenumbers preceding 18100 and

following 17550, 18300 and 17400, and use them and any other neighboring measured values not included in the above list of ranges in the interpolation method of your choice. The real refractive indexes at wavenumbers in the above ranges were calculated using cubic interpolation.

The data in RFCXH2O1 are reproduced from Zuev et al. with permission of Keter Publishing House Ltd., copyright holder.

2.7.4.2

Complex Refractive Index vs. Wavelength (2E-7 to 2E-4 meters) RFCXH2O2

Hale and Querry (1973) determined extinction coefficients for water at 25 degrees C through a broad spectral region by manually smoothing a point-by-point graph of extinction coefficients vs. wavelength, that was plotted for data obtained from a review of the scientific literature on the optical constants of water. Where data in the vacuum UV and soft X-ray regions were not available, they postulated absorption bands representing extinction coefficients. A subtractive Kramers-Kronig analysis of the combined postulated and smoothed portions of the extinction coefficient spectrum provided the index of refraction for the spectral wavelength region 2E-7 to 2E-4 meters.

2.7.4.3

Complex Refractive Index vs. Wavelength (2E-6 to 1E-3 meters) RFCXH2O3

Downing and Williams (1975) compiled values for the optical constants of liquid H_2O from current studies. Their values were based primarily on a study by Robertson et al. (1971) which measured Lambert absorption coefficients, and a Rusk et al. (1971) experiment measuring spectral reflectance at near normal incidence. They used the work of Palmer and Williams (1974) in the near infrared and the work of National Physical Labs in the extreme infrared (100 to 20 cm⁻¹). They determined real and imaginary indices in other regions using Fresnel's equation and Kramers-Kronig analysis. All the data were obtained for liquid H_2O at 27 degrees C in the wavelength range 2E-6 to 1E-3 meters.

2.7.4.4

Complex Refractive Index vs. Wavelength (9.6E-6 to 1.05E-5 meters) RFCXH2O4

See 2.7.1.3.1: "Aerosols": Ammonium Sulphate: RFCXAMSP1.

2.7.4.5

Complex Refractive Index vs. Wavelength (2E-7 to 2E-4 meters) RFCXH2O5

See 2.7.3.1: "Ice": RFCXICE1.

2.7.4.6

Complex Refractive Index vs. Wavelength (2E-6 to 2E-5 meters) RFCXH2O6 to RFCXH2O11

By using distilled water as the standard reflection, Querry et al. (1977) measured the relative specular reflectance spectra in the 2E-6 to 2E-5 meter wavelength region of the infrared for surface water samples collected from San Francisco Bay, the Pacific and Atlantic Oceans, the Great Salt Lake (Utah), the Dead Sea (Israel), and an effluent phosphate mine in central Florida (2.8.2). They compiled spectral values for the complex refractive index for each water sample by applying a Kramers-Kronig analysis to the relative reflectance spectra. For a chemical analysis of the monatomic and polyatomic ions of the natural waters, refer to the original article.

2.7.4.7

Complex Refractive Index vs. Wavelength for water in the microwave range. See 3.2.7.4: "Data File Formats" for wavelength ranges. RFH2CM+ (N8,0,10,18,20,30,40,50,60,75) (accessed by program MICRO)

See 2.7.3.4:"Ice": RFICEM+ (microwave ice files).

2.8 RELATIVE REFLECTANCE: ICE, WATER

2.8.1

Relative Reflectance (dimensionless) vs. Wavelength (2E-6 to 3.3E-5 meters) for Ice RRXICE1

See 2.7.3.2: "Ice": RFCXICE2.

2.8.2

Relative Reflectance (dimensionless) vs. Wavelength (2E-6 to 2E-5 meters) for Water RRXH2O1 - 6

See 2.7.4.6: "Liquid Water": RFCXH2O6.

3. DATA FILE AND COMPUTER TAPE INFORMATION

3.1 GUIDE [GUIDE, 4]

3.1.1 Introduction to Tape Organization

A single data set is referred to as a data file. Each separate data file comprises one computer tape file. Sections of informational text such as the data descriptions and data file and computer tape information, are also divided into distinct computer tape files.

Section 2, the Data Description (tape file 3) contains brief descriptions of each atmospheric area covered by the Handbook data files: definition of data file variables, ranges, and units, listing of data file names, and description of data source. Section 3.1, the Guide, (tape file 4) gives general user notes and technical information needed to access or understand the computer tape, data files, and computer programs. Section 3.2, Data File Formats (tape file 5), summarizes technical information on each data file in tabular form: data file variable definitions, units, and ranges in the order in which they appear on each line of a given data file, FORTRAN format statements used to create the data files, temperature, source, and computer tape file number. Appendix A (tape file θ) contains a list of all data files on the Handbook tape along with their corresponding tape file numbers. Appendix B (tape file 9) briefly describes the contents of single or groups of files on the tape. The computer programs for retrieving attenuation coefficient data and microwave refractive index data are located in tape files 171-187 and 188-217 respectively.

There are numerous cross references throughout the Handbook between section name and number and tape file name and number, both at the beginning of a section and within the text. In general, the tape file name (in capital letters) and number are given in brackets following a section name.

A typical use of the Atmospheric Handbook might entail three steps:

(1) Find the area of interest in the table of contents. Look up and read about your topic in the data description, section 2. Take note of the pertinent file name(s).

(2) Read through the Guide until any general technical questions you may have are answered and you are familiar with the data file formats, notation, and composition. Look up the specific format, parameter, and tape file number information on your desired files in Data File Formats.

(3) Load the file(s) from the tape onto your disk.

3.1.2 Data File Structure

Each tape file corresponds to a single data file. In general, sections of files are grouped according to atmospheric area. All tape files contain no more than 80 characters per line.

Numerical values in the data files are arranged in increasing order, where applicable. Data values of "-1" indicate the value was not given in the original source. The first line of all data files, except those associated with programs ATTENCOEF and MICRO, is informational text, in most cases identifying the data type, substance, and source. Precaution should be taken to read over or delete this line when accessing disk files after they have been loaded from the tape.

3.1.3 Deciphering File Names

File names consist of capital letters, numbers, and the delimiter "X". "The "X" is used as one might use a period to visually, or logically, break up the parts of information used in naming files. Within the informational text of the Handbook, three types of abbreviating methods are used to refer to sets of data files with similar names. A "+" following a file name and preceding a parenthesized set of numbers indicates an alphanumeric extension; it is not part of the actual file name; e.g., "FIL+ (1A,2,3)" refers to three files, "FILHA", "FIL2", and "FIL3". A "+" following a file name not followed by a parenthesized set of numbers indicates an alphanumeric extension of some type; the specific type isn't pertinent in the given context. A file name ending in the character set "E,0", such as "FILE,0", actually refers to two separate data files, "FILH" with data for the Extraordinary ray, and "FILO" with data for the Ordinary. An entry such as "FILL - 4" refers to four distinct files; the dash is not part of the actual data file name.

On some computer systems the length of the file names as given will be too long. All data file names are intended only as suggestions. At the time of loading a file from the tape onto disk, the naming of the file is at the discretion of the user.

The refractive index data file name prefixes "RF", "RFI", and "RFC" refer to real, imaginary, and complex refractive index data sets, respectively.

3.1.4 Unit Notation

All Handbook data files are uniformly in Systeme Internationale Units ("MKS": Meters, Kilograms, Seconds) with the exception of: the attenuation coefficient data files, for which altitude is measured in

kilometers, and absorption and scattering are measured per kilometer; and the standard atmosphere data files for which altitude, pressure, temperaure, and density are measured in kilometers, millibars, kelvins, and molecules per cubic centimeter, respectively.

A double asterisk, "**", stands for "raised to the power of", e.g., " $m^{*}-3 m^{*}-1$ " means "per meter cubed per meter". In a numerical context, the letter "E" refers to exponent, e.g., "2.5E-3" means "2.5 x 10^{-3} ", where "x" is multiplication.

3.1.5 Significant Figures

In instances where our data sources reported an error estimate for their experiments, this estimate was included in the data description. Our refractive index and relative reflectance data have six digits after the decimal. This large number of significant figures was implemented to ensure sufficient space for increased accuracy in the event of interpolation on small computer systems. In most cases the refractive index data are good to 3 or 4 decimal places. Generally, Handbook data with 4 digits after the decimal can be considered significant to 2 to 3 places, unless otherwise specified. The original source should be consulted by those to whom the accuracy precision is important. The number of figures quoted in the tables is not a good guide to significance.

3.1.6 Computer Programs: ATTENCOEF (files 171-187) and MICRO (files 178, 188-217)

Program ATTENCOEF gives the attenuation coefficients as a function of altitude for five atmospheric and two aerosol models. The altitude range is 0 to 85 kilometers, and wavelength = 0.6943 micrometers. Program MICRO gives the refractive indices for select water and ice data in the microwave region. Both programs were written following standard FORTRAN 77 guidelines; however some Data General FORTRAN V options were used. The drivers of both programs list all non-standard FORTRAN characteristics; for easy identification their occurrences within the program are delimited by a "C" in column one followed by a series of "+" signs. Additionally, non-standard format codes are listed by their statement label in the comment section at the beginning of each subroutine. Make sure to load all the files belonging to a program from the tape, or the programs won't run. Additional ice refractive index data for the microwave region, located in files 222-225, were acquired after the completion of program MICRO, and thus are not available to the user through the program. .

.

Program ATTENCOEF will request the following information:

(1) ATTENCOEF retrieves attenuation and scattering coefficients using user-entered parameters for atmospheric and aerosol types, and altitude. Do you want to enter each set of these three parameters individually, or multiply into an array? The maximum length for this array is 100.

(2) Would you like your results typed to the screen, sent to a diskfile, or both? When either of the diskfile options are used, input is sent to one standard diskfile. Care should be taken to rename this file before subsequent runs of the program occur.

(3) What atmospheric type: tropical, midlatitude summer, midlatitude winter, subarctic summer, or subarctic winter?

- (4) What altitude(s) in the 0.0 to 85.0 km range?
- (5) What aerosol type: clear or hazy?

(6) You may be asked to make a choice between the coefficients nearest the altitude requested or the values derived from using a linear interpolation which approximates these coefficients by using available heights.

(7) If (in response to question 1) you have been entering data parameters singly, after you receive the attenuation coefficients requested you may a) continue, using a different altitude, b) continue, using a different atmosphere, c) continue, but transfer to array entry mode, or d) terminate. If already in array entry mode, once your data parameter array has been exhausted, you may either start over in the entry mode of your choice or terminate.

Program MICRO will request the following information:

(1) Would you like your results typed to the screen, sent to a diskfile, or both? If either of the diskfile options are used, output is sent to one standard file. Care should be taken to rename this file before subsequent runs of the program occur.

(2) Do you want refractive indices for water or ice?

(3) The refractive indices are separated according to temperature and then sorted by wavelength. Do you want to request each temperature individually, or enter multiple temperatures into an array? Temperatures are in degrees C.

(4) You will be shown the entire data file for each temperature requested. If using the diskfile option, you may have this entire file sent to disk. You will be asked if you would like interpolations between any of the wavelengths shown. These wavelengths must be entered in meters. Because of the spareness of data in the microwave region, interpolation may not be accurate.

(5) If you have been entering temperatures singly, you have the choice to repeat step 4 with another temperature. Otherwise, you have the choice to repeat steps 2-4 or to terminate.

The effort to make these programs easily adapted by computer systems other than the one it was written on resulted in cumbersome interactive user-input formats. Special care must be taken to enter data exactly as specified in the programs' main routines.

The parameter lists for subroutine and function statements and calls in programs ATTENCOEF and MICRO were based on specifications as described in "A Technique for Making FORTRAN Programs More Readable" (J. Tant Priestley, NOAA, Wave Propagation Laboratory, unpublished). All parameter lists are divided into, and conform exactly with, the following categories: inputs, inputs/outputs, outputs. Priestley defines these categories:

(1) Input - arguments that transmit information into the subprogram but whose values remain unchanged on output.

(2) Input/Output - arguments used to transmit information both into and out of the subprogram, plus any other arguments that do not fit into categories 1 or 3.

(3) Output - arguments that transmit information out of the subprogram but no information into the subprogram; their values on input are irrelevant.

To distinguish between the three argument categories when referencing subprograms, the arguments are ordered according to category, and the categories separated by spaces. Priestley gives the following rules to ensure an unambiguous and uniform use of spaces: inputs are followed by a space, inputs/outputs are bracketed by spaces, and outputs are preceded by a space. Any double spaces are merged into a single space. Note that it is each category, not each individual argument, that is delimited by a space.

Consult the main routines of each program for examples and additional useful information.

3.1.7 Data Retrieval Example

"I have briefly read the Handbook Guide. I would like some microwave refractive index data for ice. How do I find it?"

Looking at the Contents, note that section 2.7.3 contains the description of data for the refractive indices of ice in the optical, infrared, and microwave regions, and section 3.2.7.3 contains the data file format information. In 2.7.3 read about the sources of the data. Notice that there are two sets of microwave data, one which is handled by program MICRO. In 3.2.7.3, the entry key explains the data files' variables and their units, and the format key shows the FORTRAN format statements used to create the files. Check the wavelength and temperature ranges that the data files cover, and note the data tape file numbers. Then turn back to the Guide to read the section on using program MICRO, which will retrieve select data. The final step is to load the desired files from the tape onto your disk.

3.1.8 Data Table Examples

File Name, Entry Key, and Range information was taken from "Data File Formats" (section 3.2) and is not part of the data file. The first line of the data file contains identifying information in capital letters.

Example 1:

File Name: RFXQUA2

Entry Key: Sequence #, Wavelength(m), wavenumber (cm^{-1}), Real Refractive Index (dimensionless)

Range: 1.6E-4 to 3.49E-3 meters

REFRACT	IVE INDICES: SY	INTHETIC QUARIZ,	47 DEGREES F.	(LAIKIN)
1	1.596060E-04	6.265430E Øl	1.760350E 00	
2	1.616580E-04	6.185900E 01	1.750650E 00	
3	1.644390E-04	6.Ø81282E Ø1	1.738620E 00	
4	1.647690E-04	6.069102E 01	1.737310E 00	
5	1.65179ØE-Ø4	6.054040E 01	1.735740E 00	
6	1.849500E-04	5.406880E 01	1.677210E 00	
7	1.942300E-04	5.14854ØE Øl	1.659060E 00	
8	2.37832ØE-Ø4	4.204660E 01	1.608930E 00	
9	2.536520E-04	3.942413E Ø1	1.59839ØE ØØ	
10	2.652040E-04	3,77Ø683E Ø1	1.592110E ØØ	
(etc	•)			

Example 2:

File Name: MLS

Entry Key: Sequence #, Altitude (km), Pressure (mb), Temp. (K), Density (mols cm^{-3}) for H_2O , CO_2 , O_3 , N_2O , CO, CH_4 , O_2 , N_2

Range: 0 to 100 km

STANDARD	ATMOSP	HERE - MIDLA	TITUDE SUMME	R		
1	.0	1.0130E 03	2.9400E 02	4.681ØE 17	8.0840E 15	7.5300E 11
		6.8590E 12	1.8370E 12	3.919ØE 13	5.1320E 18	1.913ØE 19
2	1.0	9.0200E 02	2.9000E 02	3.1100E 17	7.3340E 15	7.5300E 11
		6.2230E 12	1.667ØE 12	3.5560E 13	4.6560E 18	1.736ØE 19
3	2.0	8.0200E 02	2.8500E 02	1.9730E 17	6.663ØE 15	7.5300E 11
		5.6540E 12	1.514ØE 12	3.2310E 13	4.2300E 18	1.5770E 19
4	3.0	7.1000E 02	2.7900E 02	1.1030E 17	6.0480E 15	7.7810E 11
		5.1320E 12	1.3750E 12	2.9320E 13	3.8400E 18	1.4310E 19
5	4.0	6.2800E 02	2.7300E 02	6.3530E 16	5.4790E 15	8.0320E 11
		4.6490E 12	1.245ØE 12	2.6570E 13	3.478ØE 18	1.2970E 19
letc.	١					

(etc.)

3.2 DATA FILE FORMATS [FORMATS, 5]

This section contains technical information on each data file in tabular form: data file variable definitions, units, and ranges, Data General FORTRAN V format statement used to create the file(s), temperature, source, and computer tape file number. We have used scientific notation here in keeping with the style and format of our data files.

Entry Key:

The entry key contains explanations of the variables and their units in the order in which they appear in the data files. A double asterisk, "**", stands for "raised to the power of"; e.g., "m**-3 m**-1" means "per meter cubed per meter".

Format:

The format section contains the Data General FORTRAN V format code used to generate a given data file. The scale factor "P" changes the location of the decimal point in the external representation of a real number, with respect to its internal value. The format is "nP", where n is an integer constant that specifies the number of positions you want to move the decimal point to the right.

3.2.1: Attenuation Coefficients

3.2.1.1: Atmospheric Attenuation Coefficients (program ATTENCOEF)

Entry Key: With the exception of ATTENHT, which is a file of altitude (km), the entries are: absorption (km⁻¹), and scattering (km⁻¹). These values are in a one-to-one correspondence with the altitudes in file ATTENHT.

Format: ATTENHT - [F7.1], all others [2(2X,1PE11.4)]

File Name	Range	Temp.	Source/ Tape File #
ATTENHT	0 - 85 (km)		McClatchey et al. (1972)/180
AERXCLR			"/ 181
AERXHAZ	38		"/ 182
MIDLATSUM	u		"/ 183
MIDLATWIN			"⁄ 184
SUBARCSUM	u.		"/ 185
SUBARCWIN	11		"/ 186
TROPIC	п		"/ 187

3.2.1.2: Attenuation and Scattering: Water

Entry Key: sequence #, wavelength (m), attenuation (m^{-1}) , scattering (m^{-1})

Format: [15,3(2X,1PE10.4)]

File Name	Range	Temp.	Source/ Tape File #
	3.75E-7 - 8E-7		Jerlov (1968)/10

3.2.2: Standard Atmospheres

- Entry Key: sequence #, altitude (km), pressure (mb), temp. (K), density (mols cm⁻³) for H_2O , CO_2 , O_3 , N_2O , CO, CH_4 , O_2 , N_2 .
- Format: [15,2X,F7.1,5(2X,1PE10.4)] (lines with sequence #)
 [14X,5(2X,1PE10.4)] (lines without sequence #)

MLS Ø - 100 (km) Program FSCDATM (1981)/ll MLW " "/l2 SAS " "/l3 SAW " "/l4 TROPICAL " "/l5 USXSTAN " "/l6	File Name	Range	Temp.	Source/ Tape File #
	MLW SAS SAW TROPICAL	0 0		"/ 12 "/ 13 "/ 14 "/ 15

3.2.3: Cloud Drop Size Distributions

Entry Key: sequence #, number density of drops or ice particles (m⁻³ m⁻¹), begining radius (m), ending radius (m) Format: [I5,3(2X,1PE10.4)]

File Name	Range	Temp.	Source/ Tape File #
CLOUD1	lE-7 - 1.6E-5		Carrier et al. (1965, 1967)/17
CLOUD2	1E-7 - 1.07E-5		"/ 18
CLOUD3	1E-7 - 1E-5		"/ 19
CLOUD4	1E-7 - 2E-5		"/ 20
CLOUD5	1E-7 - 3E-5		"/ 21
CLOUD6	1E-7 - 1.6E-5		"/ 22
CLOUD7	1E-7 - 2E-5		"/ 23
CLOUD8	1E-7 - 1.3E-5		"/ 24
CLOUD9	1.5E-6 - 7.5E-5		Schickel (1975)/25
CLOUD10	1E-6 - 5E-5		Heymsfield (1975)/ 26
CLOUD11	5e-5 - 5e-4		"/ 27
CLOUD12	3E-6 - 1.3E-5		Heymsfield & Jahnsen (1974)/28
CLOUD13	3,97E-7 - 3.97E-5		Kraus & Barnes (1976b)/29
CLOUD14	3.97E-7 - 2E-4		Kraus & Barnes (1976a)/30
CLOUD15	3.97E-7 - 1.58E-4	_	Barnes (1977)/ 31
CLOUD16	8.05E-6 - 5.64E-4		Glass & Varley (1978)/32
CLOUD17	1E-6 - 8.6E-4		Varley & Brooks (1978)/33
CLOUD18	1E-6 - 3.1E-5		34

3.2.4: Solar Spectral Irradiance

Entry Key: sequence #, wavelength (m), solar spectral irradiance (watts $m^{-2} m^{-1}$)

Format: [15,2(2X,1PE11.4)]

File Name	Range	Temp.	Source/ Tape File #
FLUX1	1.2E-7 - 1E-4		Thekaekara (1972)/ 35
FLUX2	2.5E-10 - 1.95E-2		Smith & Gottlieb (1974)/ 36

3.2.5: Sky Spectral Radiance

Entry Key: sequence #, wavelength (m), spectral radiance (watts $m^{-2} m^{-1}$) NOTE: This quantity is spectral radiance density: watts per square meter, per meter of wavelength.

Format: [15,2(2X,1PE11.4)]

File Name	Range	Temp.	Source/ Tape File #
SKYBACSL · SKYBAC1Ø	3.1E-7 - 7.2E-7		Clark (1969)/37 "/ 38

3.2.6: Rayleigh Coefficients: Air

Entry Key: MASSXSCAT - sequence #, wavelength (m), mass scattering coefficient (m² kg⁻¹) : VOLXSCAT - sequence #, wavelength (m), volume scattering coefficient (m⁻¹) : RAYXSCATCROSS - sequence #, wavelength (m), scattering cross section (m²)

Format : [I5,2(2X,1PE10.4)]

File Name	Range	Temp.	Source/ Tape File #
MASSXSCAT VOLXSCAT RAYXSCATCROSS	2E-7 - 2E-5 "	.Ø [*] C "	Penndorf (1957)/39 "/ 40 "/ 41

3.2.7 Refractive Indices: Aerosols, Air, Ice, Liquid H₂O (in alphabetic order)

NOTE: The file name prefixes "RF", "RFI", and "RFC" refer to real, imaginary, and complex refractive index files, respectively, with the exception of the microwave files used by program MICRO, which contain complex data. Aerosol files are divided into these three data types, and then listed alphabetically within these categories.

File names preceded by "**" indicate they are the microwave refractive index files, used in program MICRO; these asterisks are not part of the file name.

Entry Key: RF+ files: sequence #, wavelength (m), wavenumber (cm^{-1}) , real refractive index : RFI+ files: sequence #, wavelength (m), wavenumber (cm^{-1}) , imaginary refractive index

- : RFC+ files: sequence #, wavelength (m), wavenumber (cm⁻¹), real refractive index, imaginary refractive index
- : MICRO files: sequence #, wavelength (m), real refractive index, imaginary refractive index, source (real index), source (imaginary index)

Format: RF and RFI files: [15,3(2X,1PE13.6)]

- : RFC files: [15,4(2X,1PE13.6)]
- : Microwave files: [15,3(2X,1PE13.6),2(5X,A2)]

	File Name	-	Temp.	Source/ Tape File #
3.2.7.	l: Aerosols			
	RFXBARF4 RFXCAF1 - 3 RFXCDS1E,O RFXCDS2E,O RFXGERM1 - 4 RFXGERM5 RFXGLASS1 - 17	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	24°C 15,35,55°C 25°C 15,35,55°C 297,275, 204, 94 K 27°C 27°C 25°C 25°C 24°C	Zernike (1964)/42, 43 Malitson (1964)/49 - 51 "/ 52 Malitson (1963)/59 - 61 Bieniewski & Czyzak (1963)/53, 54 Czyzak et al. (1957)/ 55, 56 Icenogle et al. (1976)/75 - 78 Salzburg & Villa (1957)/ 79 Kingslake & Conrady (1937)/80 - 96 Salzburg & Villa (1957)/ 97, 98 Rodney et al. (1958)/ 99 Zernike (1964)/103, 104
	RFXSAPPH2 RFXSAPPH3 RFXSAPPH4 - 6	4.96E-5 - 4.95E-4 1.6E-4 - 3.49E-3 1.44E-7 - 2.31E-7 2.54E-7 - 6.91E-7 2.65E-7 - 5.58E-6 2.65E-7 - 4.25E-6 4.05E-7 - 7.07E-7 2.55E-6 - 1.03E-5	47°F 24°C 24°C 19°C 17,24,31°C 296,275, 202, 104 K	Russell & Bell (1967)/ 112, 113 Laikin (1961)/114 Chandrasekbaran & Damany (1968)/115, 116 Jeppeson (1958)/124, 125 Malitson (1962)/126 Malitson et al. (1958)/ 127 "/ 128-130 Icenogle et al. (1976)/135 - 138
	RFXSILIC5 RFXSILICA RFXSODNITE,O RFXZNS1E,O RFXZNS2	1.36E-6 - 1.1E-5 3.65E-7 - 1.53E-6 4E-7 - 7E-7 3.6E-7 - 1.4E-6 4.4E-7 - 1.4E-6	26°C	Salzburg & Villa (1957)/139 Zernike (1964)/134 Ivlev & Popova (1974)/ 140, 141 Bieniewski & Czyzak (1963)/142, 143 Czyzak et al. (1957)/ 144
3.2.7.2	RFCXAMSP1 - 3 RFCXAMSP4 RFCXCALCE,O RFCXDUST1 - 3 RFCXGLASS1 RFCXGLASS1 RFCXGXPB RFCXMASCAG RFCXMASCAG RFCXMOLYB RFCXPLTX1 - 5 RFCXQUA1E,O RFCXQUA2E,O RFCXQUA2E,O RFCXQUA3,4 RFCXSALT RFCXSAPPH1 RFCXSAPPH12 RFCXSAPPH2 RFCXSAPPH20 RFCXSYNAER	3E-7 - 1.7E-6 9.3E-6 - 9.5E-6 4.05E-7 - 4E-5 2E-7 - 6E-6 3E-7 - 1.7E-6 4.8E-7 - 6.9E-7 2.5E-7 - 6E-6 2E-7 - 6E-6 9.3E-6 - 1.06E-5 7.68E-7 - 3.6E-5 5E-7 - 6E-6 1E-7 - 1.65E-7 2E-7 - 6E-6 9E-6 - 3.3E-4 2E-7 - 3.3E-4 4E-7 - 1.5E-5 2E-7 - 2E-5	24°C	Lindberg et al. (1976)/62 - 71 Jennings (1981)/45 - 47 Toon et al. (1976)/48 Ivlev & Popova (1974)/57,58 Lindberg (1977)/72 - 74 Hoover/100 Ivlev & Popova (1974)/101 "/105 Meyer (1926)/106 Jennings (1981)/107 - 111 Peterson & Weinman (1969)/117, 118 Ivlev & Popova (1974)/119, 120 Lamy (1977)/121, 122 Toon et al. (1976)/123 Ivlev & Popova (1974)/131 Toon et al. (1976)/132 "/133 Ivlev & Popova (1973)/44 Penndorf (1957)/145
	RFXAIRN3Ø RFXAIRN15 RFXAIRØ RFXAIR15 RFXAIR3Ø	2E-7 - 2E-5 """"""""""""""""""""""""""""""""""""	-30°C -15°C ذC 15°C 30°C	Penndorf (1957)/ 145 "/ 146 "/ 147 "/ 148 "/ 149
3.2.7.3	Ice			
	RFCXICE1 RFCXICE2 RFCXICE3 RFCXICE4 RFCXICE5 RFCXICE6 RFCXICE7 RFCXICE8 ** RFICEMN50 ** RFICEMN30 ** RFICEMN10 ** RFICEM0	9.5E-7 - 1.52E-4 2E-6 - 3.3E-5 1.25E-6 - 3.3E-4 4.43E-8 - 1.67E-4 1.67E-4 - 8.6 " " 3E-2 - 1E-1 "	-7°C 100 K -7°C -1°C -5°C -20°C -60°C -50°C -30°C -30°C -10°C 0°C	Irvine & Pollack (1968)/ 150 Schaaf & Williams (1973)/ 151 Bertie et al. (1969)/152 Warren (1984)/ 221 " 222 " 223 " 224 " 225 Ryde & Ryde (1945)/ 204 "/ 205 "/ 206 "/ 207

•

	File Name	Range	Temp.	Source/ Tape File #
3.2.7.4	Liquid H ₂ O	· · · · · · · · · · · · · · · · · · ·		
	RFCXH2O1 RFCXH2O2 RFCXH2O3 RFCXH2O4 PPCXH2O4	5.46E-7 - 2.53E-5 2E-7 - 2E-4 2E-6 - 1E-3 9.6E-6 - 1.05E-5		Zuev et al. (1974)/ 153 Hale & Querry (1973)/ 154 Downing & Williams (1975)/ 155 Jennings (1981)/ 156
	RFCXH2O5 RFCXH2O6 RFCXH2O7 RFCXH2O8	2E-7 - 2E-4 2E-6 - 2E-5	300 K	Irvine & Pollack (1968)/157 Querry et al. (1977)/ 158 "/ 159 "/ 160
	RFCXH2O9 RFCXH2O10 RFCXH2O11	11 31 17	11 11	"/ 161 "/ 162 "/ 163
	** RFH20MN8 ** RFH20MØ	6.2E-3 - 3.21E-2 5E-3 - 1E-1	8°C ذC	Lane & Saxton (1952)/ 208 Ryde & Ryde (1945); Lane & Saxton (1952); Collie et al. (1948); Deirmendjian (1963)/ 209
	** RFH2OM10		10° C	"/ 210
	** RFH2OM18 ** RFH2OM2Ø	5E-3 - 1E-1 "	18°C 20°C	Ryde & Ryde (1945)/ 211 Ryde & Ryde (1945); Lane & Saxton (1952); Collie et al. (1948)/ 212
	** RFH2OM3Ø	**	30° C	"/ 213
	** RFH2OM4Ø	п	40° C	"/ 214
	** RFH20M5Ø	6.2E-3 - 1E-1	50° C	Lane & Saxton (1952); Collie et al. (1948)/ 215
	** RFH2OM6Ø	1.27E-2 - 1E-1	60° C	Collie et al. (1948)/ 216
	** RFH2OM75	н	75° C	"/ 217

3.2.8 Relative Reflectance: Ice, H2O

Entry Key: sequence #, wavelength (m), relative reflectance
Format: [15,2(2X,1PE13.6)]

File Name	Range	Temp.	Source/ Tape File #
RRXH201 - 6	2E-6 - 2E-5		Querry et al. (1977)/ 165 - 170
RRXICE1	2E-6 - 3.3E-5	-7°C	Schaaf & Williams (1973)/ 164

4. ACKNOWLEDGMENTS [THANKS, 6]

Much gratitude is owed to Margot Ackley for her professional aid in giving the project a firm basis and a good start. Without a succession of devoted students, Kris Yoshida, Karen Umemoto, and Denise Nagode, the effort would have foundered. The editing talents of Lindsay Murdock of NOAA and Helen Coffey of NESDIS contributed to a grammatically intact publication. Above all, hard and intelligent work by Suchi Psarakos brought the project to a conclusion. Much of the compilation was made while the author was in Wave Propagation Laboratory, ERL/NOAA, Boulder, Colorado. A great deal of the data was collected at the Air Force Geophysical Laboratory, Hanscom Field, Massachusetts, by many researchers, too numerous to mention.

5. REFERENCES [REF, 7]		
BARNES, A.A., Jr.	1977	Weather Document for TDV-1, Sixty Day Report, AFGL, Bedford, MA, Table G, July 15, 1977.
BERTIE, J.E., H.T. LABBE, and E. WHALLEY	1969	Journal of Chemical Physics, 59, No. 19, pp. 4501-4520.
BIENIEWSKI, T.M., and S.J. CZYZAK	1963	Journal of the Optical Society of America, pp. 496-497, April 1963.
CARRIER, L.W., G.A. CATO, and K.J. VON ESSON	1965	Final Report - Laser Systems Study, Part III: Effect of Clouds. Prepared for U.S. Naval Ordnance Labs by Xerox Electro Optical Systems, Corona, California, Contract N123 (62738) 34515A(X), EOS report 4440 - Final III.
CARRIER, L.W., G.A. CATO, and K.J. VON ESSON	1967	Applied Optics, 6, No. 7, pp. 1209-1216.
CHANDRASEKHARAN, V., and H. DAMANY	1968	Applied Optics, 7, No. 4, pp. 687-688.
CLARK, W.M.	1969	S.P.I.E. Journal, 7, pp. 40-45.
CLARKE, G.L., and H.R. JAMES	1939	Journal of the Optical Society of America, 29, pp. 43-55.
COLLIE, C.H., J.B. HASTED, and D.M. RITSON	1948	Physical Society: 60, 71, 145.
CZYZAK, S.J., W.M. BAKER, R.C. CRANE, and J.B. HOWE	1957	Journal of the Optical Society of America, 47, No. 3, pp. 240-243.
DEIRMENDJIAN, D.	1963	"Complete Microwave Scattering and Extinction Properties of Polydispersed Cloud and Rain Elements", The Rand Corporation.
DOWNING, H.D., and D. WILLIAMS	1975	Journal of Geophysical Res., 80, No. 12, pp. 1656-1661.
DUNSMUIR, R., and J. LAMB	1945	"The Dielectric Properties of Ice at Wavelengths of Three and Nine Centimeters", Manchester University, Dept. #61.
GALLERY, W.O., F.X. KNEIZYS, and S.A. CLOUGH	1981	Computer code for FCSDATM by Gallery, Kneizys, and Clough, AFGL, Optical Physics, Hanscom AFB, Dedford, MA.
GLASS, M. and D.J. VARLEY	1978 <u></u>	"Observations of Cirrus Particle Characteristics Occurring with Halos", AMS preprint, Cloud Physics and Atmospheric Electricity Conference, Issaquah, WA: July 31-August 4, 1978, pp. 1-3.
GRAMS, G.W., I.H. BLIFFORD, JR., B.G. SCHUSTER and J.J. DE LUISI	1972	Journal of the Atmospheric Sciences, 29, pp. 900-905.
GRAY, D.E.	1963	American Institute of Physics Handbook, 2nd ed., McGraw-Hill, NY.
HALE, G.M., and M.R. QUERRY	1973	Applied Optics, 12, No. 3, pp. 555-563.
HERZBERGER, M.	1942	Journal of the Optical Society of America, 32, pp. 70-77.
HEYMSFIELD, A.J.	1975	Journal of the Atmospheric Sciences, 32, pp. 709-808.
HEYMSFIELD, A.J., and L.J. JAHNSEN	1974	"Microstructure of Tropopause Cirrus Layers", AMS preprint, Sixth Conference on Aerospace and Aeronautical Meteorology, El Paso, TX, pp. 43-48.
ICENOGLE, H.W., B.C. PLATT, and W.L. WOLFE	1976	Applied Optics, 15, No. 10, pp. 2348-2351.
IRVINE, W.M., and J.B. POLLACK	1968	<u>Icarus</u> , 8, pp. 324-360.

IVLEV, L.S., and S.I. POPOVA	1974	Russian: <u>Izvestiya Vysshikh Uchebnykh Zavendenii. Fizika,</u> 15, No. 5, pp. 91-97, May 1972; English: <u>Soviet Physics</u> Journal, pp. 703-707, May 15, 1974.
IVLEV, L.S., and S.I. POPOVA	1973	Russian: <u>Akademiia Nauk, SSSR. Izvestiya Seriia Fizika</u> <u>Atmosfery I Okeana, 9</u> , No. 10, pp. 1034-1043; English: <u>Atmospheric and Oceanic Physics</u> , 9, No. 10, pp.587-590, 1973.
JENNINGS, S.C.	1981	Journal of the Optical Society of America, 71, No. 8, pp. 923-927.
JEPPESON, M.A.	1958	Journal of the Optical Society of America, 48, No. 9, pp. 629-632.
JERLOV, N.G.	1968	Optical Oceanography, p. 51, Elsevier Publishing Co., NY.
KINGSLAKE, R., and H.G. CONRADY	1937	Journal of the Optical Society of America, 27, pp. 257-262.
KRAUS, M.J., and A.A. BARNES, Jr.	1976a	Weather documentation for STM-11W, Sixty Day Report, AFGL, Bedford, MA, Table G, September 13.
KRAUS, M.J., and A.A. BARNES, Jr.	1976b	Weather documentation for SAMAST/MINT, Sixty Day Report, AFGL, Bedford, MA, Table G, October 18.
LAIKIN, M.	1961	Journal of the Optical Society of America, 51, p. 238.
LAMY, P.	1977	Applied Optics, 16, No. 8, August.
LANE, J.A., and J.A. SAXTON	1952	<u>Royal Society: A</u> , 213, 400.
LEGRAND, Y.	1939	Ann. Inst. Oceanog., <u>19</u> , pp. 393-436.
LINDBERG, J.D., J.B. GILLESPIE, and B. HINDS	1976	"Measurements of the Imaginary Refractive Indices of Atmospheric Particulate Matter from a Variety of Geographic Locations", <u>Proceedings of the Symposium on Radiation in the</u> <u>Atmosphere</u> , Garmisch-Partenkirchen FRG, 19-28 August 1976, H.J. Bolle, ed., Science Press.
LINDBERG, J.D.	1977	Data tables were taken from correspondence with Lindberg, taken by him from various reports of experiments performed in 1977 at the Atmospheric Sciences Laboratory in White Sands, NM, by Lindberg and S.A. Schleusener.
MALITSON, I.H., F. MURPHY, Jr., and W.S. RODNEY	1958	Journal of the Optical Society of America, 48, pp. 72-73.
MALITSON, I.H.	1962	Journal of the Optical Society of America, 52, No. 12, pp. 1377-1379.
MALITSON, I.H.	1963	<u>Applied Optics, 2</u> , No. 11, pp. 1103-1107.
MALITSON, I.H.	1964	Journal of the Optical Society of America, <u>54</u> , No. 5, pp. 628-632.
McCLATCHEY, R.A., R.W. FENN, J.E.A. SELBY, F.E. VOLZ, and J.S. GARING	1972	Optical Properties of the Atmosphere, 3rd ed., p. 19, AFGL-72-0497.
MEYER, A.	1926	Journal of the Optical Society of America, 13, pp. 557-560.
PAIMER, K.F., D. WILLIAMS, and M.R. QUERRY	1974	Journal of the Optical Society of America, 64, p. 1107.
PENNDORF, R.	1957	Journal of the Optical Society of America, 47, No. 2, pp. 176-182.
PETERSON, J.T., and J.A. WEINMAN	1969	Journal of Geophysical Res., 74, No. 28, pp. 6947-6952.
QUERRY, M.R., W.E. HOLLAND, R.C.	1977	Journal of Geophysical Res., 82, No. 9, pp. 1425-1433. In

,

,

٠

Ú.

ROBERTSON, C.W., and D. WILLIAMS	1971	Journal of the Optical Society of America, 61, p. 1316.
RODNEY, W., I.H. MALITSON, and T. KING	1958	Journal of the Optical Society of America, 48, No. 9, pp. 633-636.
RUSK, A.N., D. WILLIAMS, and M.R. QUERRY	1971	Journal of the Optical Society of America, 61, p. 895.
RUSSELL, E., and E.E. BELL	1967	Journal of the Optical Society of America, 57, No. 3, pp. 341-348.
RUSSELL, P.B., G.W. GRAMS, I.H. BLIFFORD, Jr., and D.A. GILLETTE	1974	Journal of Applied Meteorology, 13, p. 459.
RYDBERG, F.	1828	Poggendorfs Ann., 14, 45.
RYDE, D., and J.W. RYDE	1945	"Attenuation of Centimetre and Millimetre Waves by Rain, Hail, Fogs, and Clouds", Research Labs of General Electric Company, Ltd., Wembley, England.
SALZBERG, C.D., and J.J. VILLA	1957	Journal of the Optical Society of America, <u>47</u> , No. 3, pp. 244-246.
SAXTON, J.A.	1945	"The Dielectric Properties of Water at Wavelengths from 2mm to 10cm and Over the Temperature Range Ø degrees C to 40 degrees C", N.P.I., Paper no. R.R.B./C.115,
SCHAAF, J.W., and D. WILLIAMS	1973	Journal of the Optical Society of America, 63, No. 6, pp. 726-732. We appended the data from the article with addi- tional data which J.W. Schaaf furnished for us. These data and information discussing pessimistic and optimistic uncer- tainty estimates can be found in the doctoral dissertation of J.W. Schaaf, Kansas State University (1973).
SCHICKEL, K.P.	1975	"Sampling of Droplet Distributions From Water Clouds", Deutsche Forschungs-Und Versuchsanstalt fur Luft-Und Raumfahrt, Institut fur Physik der Atmosphare, Oberpfaffenhofen, West Germany, November 25.
SMITH, E.V.P., and D.M. GOTTLIEB	1974	Space Science Review, 16, pp. 771-802.
SMITH, M.A.H.	1982	"Compilation of Atmospheric Gas Concentration Profiles from Ø to 50 km", NASA-IM-83289.
SPITZER, W.G., and D.A. KLEINMAN	1961	Physical Review, <u>121</u> , pp. 1324-1335.
STOCKBERGER, D.C.	1949	Journal of the Optical Society of America, 39, p. 731.
STOCKBERGER, D.C., and M. EARLY	1944	"Artificial Fluorite", O.S.R.D., Rept. No. 4690.
THEKAEKARA, M.P.	1972	Photonics Spectra, 6, No. 3, pp. 32-35.
TILTON, L.W., E.K. PLYLER, and R.E. STEPHENS	1949	J. Res. Natl. Bur. Std., U.S., <u>43</u> , 81.
TOON, O.B., B.N. KHARE and J.B. POLLACK	1976	Journal of Geophysical Res., <u>81</u> , No. 33, pp. 5733-5748.
VALLEY, S.L., ed.	1965	Handbook of Geophysics and Space Environments, AFGL.
VARLEY, D.J., and D.M. BROOKS	1978	"Cirrus Particle Distribution Study, Part 2", AFGL-TR-78-0248.
WARREN, S.G.	1984	Applied Optics, 23, pp. 1206-1225.
MMO	1982	"The Stratosphere 1981 Theory and Measurement", Global Ozone Research and Monitoring Project, Report 11.
WYATT, P.J.	1980	<u>Applied Optics</u> , <u>19</u> , No. 6, pp. 975-983.

ZERNIKE, F., Jr.	1964	Journal of the Optical Society of America, 54, No. 10, p. 1215.
ZUEV, V.E.	1974	Propagation of Visible and Infrared Radiation in the Atmosphere, p. 371, John Wiley & Sons, NY, 1974.

.:

}

÷

APPENDIX A: List of Files on Atmospheric Handbook Computer Tape [LISTFILEØ, tape files Ø and 8]

The following list is the linear layout of the files on the Atmospheric Handbook computer tape. Each tape file corresponds to a single data file. Sections of files are grouped according to atmospheric area; an explanation of the grouping breakdown is located in APPENDIX B, tape file 9, "FILEXDESCRIP". All tape files contain 80 characters per line. For further information, see section 3.1, tape file 4, "GUIDE".

Tape		Tape		Tape		Tape	
File	File	File	File	File	File	File	File
Number	Name	Number	Name	Number		Number	Name
 a	LISTFILEØ	63	RFIXDUST2	126	RFXSAPPH2	189	DAT
Ø 1	INTRO	63 64	RFIXDUST3	120	RFXSAPPH3	190	H2OPEN
1 2 3 4	CONTENTS	65	RFIXDUST4	128	RFXSAPPH4	191	H2OTEMP
2	DATAXDESCRIP		RFIXDUST5	129	RFXSAPPH5	192	HEADER
4	GUIDE	67	RFIXDUST6	130	RFXSAPPH6	193	ICEOPEN
5	FORMATS	68	RFIXDUST7	131	RFCXSAPPH1	194	ICETEMP
5 6	THANKS	69	RFIXDUST8	132	RFCXSAPPH2E	195	INTERP
Ž	REF	7Ø	RFIXDUST9	133	RFCXSAPPH2O	196	INIVEC
8	LISTFILEØ	71	RFIXDUST10	134	RFXSILICA	197	KEY
9	FILEXDESCRIP	72	RFCXDUST1	135	RFXSILIC1	198	RD
10	H2OXATTENSCAT	73	RFCXDUST2	136	RFXSILIC2	199	READANS
11	MLS	74	RFCXDUST3	137	RFXSILIC3	200	RFPRINT
12	MLW	75	RFXGERM1	138	RFXSILIC4	201	SUBHDR
13	SAS	76	RFXGERM2	139	RFXSILIC5	202	TEMPCHK
14	SAW	77	RFXGERM3	140	RFXSODNITE	203	VECTOR
15	TROPICAL	78	RFXGERM4	141	RFXSODNITO	204	RFICEMN50
16	USXSTAN	79	RFXGERM5	142	RFXZNS1E	205	RFICEMN30
17	CLOUD1	80	RFXGLASS1	143	RFX2NS10	206	RFICEMN10
18	CLOUD2	81	RFXGLASS2	144	RFXZNS2	207	RFICEMØ RFH20MN8
19	CLOUD3	82	RFXGLASS3	145	RFXAIRN30	208 209	RFH2OMØ
20	CLOUD4	83	RFXGLASS4	146 147	RFXAIRN15 RFXAIRØ	209 210	RFH20M10
21 22	CLOUD5	84 85	RFXGLASS5 RFXGLASS6	147	RFXAIR15	210	RFH20M18
22	CLOUD6	85 86	RFXGLASS7	140	RFXAIR3Ø	212	RFH2OM20
23 24	CLOUD7 CLOUD8	87	RFXGLASS8	149	RFCXICE1	212	RFH2OM3Ø
25	CLOUDS CLOUD9	88	RFXGLASS9	151	RFCXICE2	213	RFH2OM4Ø
26	CLOUD1Ø	89	RFXGLASS10	152	RFCXICE3	215	RFH2OM5Ø
27	CLOUD11	90	RFXGLASS11	153	RFCXH2O1	216	RFH2OM6Ø
28	CLOUD12	91	RFXGLASS12	154	RFCXH2O2	217	RFH2OM75
29	CLOUD13	92	RFXGLASS13	155	RFCXH2O3	218	APPENDIXC
30	CLOUD14	93	RFXGLASS14	156	RFCXH2O4	219	APPENDIXD
31	CLOUD15	94	RFXGLASS15	157	RFCXH2O5	22Ø	FACTS
32	CLOUD16	95	RFXGLASS16	158	RFCXH2O6	221	RFCXICE4
33	CLOUD17	96	RFXGLASS17	159	RFCXH2O7	222	RFCXICE5
34	CLOUD18	97	RFXGLASS18	16Ø	RFCXH2O8	223	RFCXICE6
35	FLUX1	98	RFXGLASS19	161	RFCXH2O9	224	RFCXICE7
36	FLUX2	99	RFXGLASS20	162	RFCXH2O10	225	RFCXICE8
37	SKYBACSL	100	RFCXGLASS1	163	RFCXH2011		
38	SKYBAC10	101	RFCXGRAH	164	RRXICE1		
39	MASSXSCAT	102	RFCXGYPS	165	RRXH2O1 RRXH2O2		
40	VOLXSCAT	103	RFXKDPE RFXKDPO	166 167	RRXH2O2 RRXH2O3		
41 42	RAYXSCATCROSS	104 105	RFCXMASCAG	167	RRXH2O4		
42	RFXADPE RFXADPO	105	RECXMOLYB	169	RRXH2O5		
44	RFCXSYNAER	107	RFCXPL/TX1	170	RRXH2O6		
45	RFCXAMSP1	108	RFCXPLTX2	171	ATTENCOEF		
46	RFCXAMSP2	109	RFCXPLTX3	172	AERRD		
47	RFCXAMSP3	110	RFCXPL/TX4	173	ATMRD		
48	RFCXAMSP4	111	RFCXPL/TX5	174	ATTEN		
49	RFXBARF1	112	RFXQUA1E	175	BUILDVEC		
50	RFXBARF2	113	RFXQUA10	176	ERCHK		
51	RFXBARF3	114	RFXQUA2	177	INPT		
52	RFXBARF4	115	RFXQUA3E	178	LINTERP		
53	RFXCDS1E	116	RFXQUA30	179	NEAR		
54	RFXCDS10	117	RFCXQUALE	180	ATTENHT		
55	RFXCDS2E	118	RFCXQUA10	181	AERXCLR		
56	RFXCDS20	119	RFCXQUA2E	182 183	AERXHAZ MUDIATISUM		
57 58	RFCXCALCE	120 121	RFCXQUA2O RFCXQUA3	183	MIDLATSUM MIDLATWIN		
58 59	RECXCALCO	121	RFCXQUA3 RFCXQUA4	184	SUBARCSUM		
59 6Ø	RFXCAF1 RFXCAF2	122	RFCXSALT	185	SUBARCWIN		
61	RFXCAF3	123	RFXSAPPH1E	187	TROPIC		
62	RFIXDUST1	125	RFXSAPPH10	188	MICRO		
•							

This section briefly describes the contents of single or groups of files on the Atmospheric Handbook computer tape, as listed in APPENDIX A, tape file Ø, "LISTFILEØ".

Tape	
File	
Number	Description
Ø:	"LISTFILE0" - List of all data files on Atmospheric Handbook tape and corresponding tape file number. Each file corresponds to a singular data file. Sections of files are grouped according to atmospheric area. (NOTE: when printed as a bound document, file Ø should not be considered part of the text, and should therefore not be printed. File Ø exists solely as an aid for someone using the Atmospheric Handbook in tape format, to enable easy initial identification of the tape
1:	and its contents.) "INTRO" - Introduction to the evolution, present aims, and future prospects of the Atmospheric
	Handbook.
2:	"CONTENTS" - Table of contents of the Atmospheric Handbook.
3:	"DATAXDESCRIP" - A brief description of each atmospheric area covered by the Handbook data files:
	definition of data file variables, ranges, and units, listing of file names, and description of
	data source.
4:	"GUIDE" - General user notes and technical information needed to access/understand the computer
	tape, data files, and computer programs: Introduction to Tape Organization, Data File Structure,
	Deciphering File Names, Unit Notation, Significant Figures, Computer Programs: ATTENCOEF and
	MICRO, Data Retrieval Example, Data File Examples.
5:	"FORMATS" - Technical information on each data file in tabular form: data file variable defini-
	tions, units, and ranges, FORTRAN format statements used to create the file(s), temperature,
	source, and computer tape file number.
6:	"THANKS" - Acknowledgments.
7:	"REF" - A list of all references cited in file 3.
8:	"LISTFILE0" - See file 0.
9:	"FILEXDESCRIP" - Brief description of files listed in file Ø.
10:	Attenuation Coefficients, H ₂ O
	Standard Atmospheres
	Cloud Drop Size Distributions
	Solar Spectral Irradiance
37-38:	•
	Rayleigh Air Coefficients
	Refractive Indices, Aerosols
	Refractive Indices, Air
	Refractive Indices, Ice (does not include microwave files). See also files 221-225.
	Refractive Indices, Liquid H ₂ O (does not include microwave files)
	Relative Reflectance: Ice, H20
	Attenuation Coefficients, Atmospheric; Program ATTENCOEF
188-217	Select Refractive Indices for H ₂ O and Ice, microwave; Program MICRO. (Note that file 178 is used by both
100 117	ATTENCOEF and MICRO and thus should be loaded with both file sets). Additional microwave ice refractive index data, located in files 222-225, were acquired after the completion of program MICRO, and thus are not available to the user through the program.
218-219	"APPENDIXC" and "APPENDIXD" - Programs ATTENCOEF and MICRO. These two files were made by
	appending files 171-187 and 188-217. The individual program and subroutine files should be
	loaded as needed to run the programs; tape files 218 and 219 should be printed as needed for
	casual reference or interest, as when compiling an Atmospheric Handbook reference manual.
220:	"FACTS" - A list of useful atmospheric constants and conversions.
001 005	

í.

v)

11

221-225:Refractive Indices, Ice (includes some data for microwave wavelengths)

C PROGRAM ATTENCOBF

C----- Program ATTENCOEF gives the attenuation coefficients as a C----- function of altitude for 5 atmospheric and 2 aerosol models. C----- The altitude range is \emptyset - 85 km, and wavelength = $\emptyset.6943$ microns.

C----- The following list describes all non-standard FORTRAN C----- characteristics in the Handbook programs. For easy access, C----- their occurrences within the routines are marked by a "C" in C----- column one, followed by a series of plus signs: '+'. Format C----- statements in which non-standard format codes appear are listed C----- in the comment section 'Non-standard Format Codes'.

C----- General Suggestions for Improvement: Due to the need to C----- standardize the programs, it was necessary to format inter-C----- active input. This often presents awkward restrictions for C----- the user. It is advised that, if available, free-formatted reads C----- be implemented to handle numerical input. In addition, the C----- use of one standard output filename for all program runs is C----- impractical and potentially hazardous. Although the 'A' C----- attribute will provide protection against overwriting on C----- It is advisable that something such as a temporary alternative. C----- It is advisable that something such as string formatting C------ be used to allow character input, in particular, for the C------ interactive naming of output files. C----- Additionally, individual users should implement precautions C------ The program contains only minor precautions. The user should

C----- beware that some systems accept entry of a carriage return or a C----- mathematical sign character (+,-) or decimal as if a zero had C----- been entered.

C----- Non-standard FORTRAN options:

C

C----- STATIC: The STATIC option places all non-COMMON variables and C----- arrays in a fixed area in memory, rather than on the run-time C----- stack. It initializes all static variables to zero at load time, C----- unless you data-initialize them. You may retrieve the values of C----- static variables within a subprogram upon re-entry to the C----- subprogram for the second and subsequent times.

C----- OPEN, CLOSE, and REWIND: Although the purpose of these C----- input/output statements is obvious, their implementation C----- may differ from system to system. The 'OPEN' statement used C----- with the 'ATT=A' option specifies that appending is to be C----- performed onto the file associated the the channel opened. C----- This protects against overwriting the previous contents of the C----- file, if any existed. REWIND repositions the record pointer to C----- the beginning of the specified file.

C----- 'P' and 'Z' format code: The scale factor 'P' changes the C----- location of the decimal point in the external representation C----- of a real number, with respect to its internal value. The C----- format is 'nP', where 'n' is an integer constant that specifies C----- the number of positions you want to move the decimal point to C----- the right. 'Z' format code suppresses the newline character C----- on output of the current record. It is represented internally, C----- its presence should be considered if any of these files are. C----- edited.

C----- Non-Standard Format Codes (statement labels): 554 -- User options: С С entry modes: single or array entry C--print to screen and/or diskfile C----linear interpolation or closest values at unavailable C-----C----data points ---- Output: C С Output diskfile 'ATTENOUT'; should be renamed after each run C-

C----- File unit #s: С Ø: aerosol C-----1: atmospheric model C----C-----2: diskfile C-----11: terminal C-----C----- Data Files Used С AERXCLR, AERXHAZ, ATTENHT, MIDLATSUM, MIDLATWIN, SUBARCSUM, C-----SUBARCWIN, TROPIC C-----C----- Subroutines: C _____ Ľ C----AERRD: opens and reads aerosol file C-----ATMRD: opens and reads atmosphere files C-----ATTEN: writes coefficients to output BUILDVEC: creates a user-entered array of data information C-----ERCHK: user error check function C-----C-----INPT: interactively prepares variables entered singly for input to ATTEN C-----C-----LINTERP: linear interpolation function NEAR: finds the value closest to the user-entered height C-----C----- Variables: С ----C-----Logical C-----ANSR, ERCHK: check for user input error DATSET: determines entry mode C-----C-----INTERP: determines whether interpolation is used C-----OPEN2: determines if output file is open for writing SCREEN, DISK: determine if text has been written to screen C-----C----and/or disk C-----Integer: ATM: user-entered atmosphere model C-----OUT: user print option C-----С Suchi Psarakos С N.O.A.A. С 325 Broadway С R/E/WP2 Boulder, Colorado 80303 С С Please direct questions to Dr. Vernon Derr, (303) 497-6002, or Suchi Psarakos, (303) 497-5361. STATIC OPEN2, SCREEN, DISK INTEGER ATTENOUT INTEGER ATM, ANS, OUT LOGICAL ANSR, ERCHK, DATSET, INTERP, OPEN2, SCREEN, DISK OPEN2 = .FALSE. SCREEN = .FALSE. DISK = .FALSE. Centry mode? WRITE (11,550) 9 1Ø WRITE (11,552) READ (11, 525,ERR=10) ANS ANSR = ERCHK (ANS) 100 IF (ANSR) GOTO 100 IF (ANS .EQ. \emptyset) DATSET = .FALSE. IF (ANS .EQ. 1) DATSET = .TRUE. C---- print option? WRITE (11,554) WRITE (11,556) 125 126 READ (11, 525, ERR = 126) ANS IF ((ANS .NE. 0) .AND. (ANS .NE. 1) .AND. (ANS .NE. 2)) GOTO 126 \$ OUT = ANSIF (((OUT .EQ. 1).OR. (OUT .EQ. 2)).AND. (.NOT.OPEN2)) GOTO 225 GOTO 250

Ċ,

Ŀ

 i^{2}

1. L.

C---- open output file OPEN 2, "ATTENOUT", ATT="A" 225 OPEN2 = .TRUE.C----- write heading to output 25Ø IF ((SCREEN).AND.(DISK)) GOTO 450 IF ((.NOT.SCREEN).AND. (.NOT.DISK).AND. (OUT.EQ.2)) GOTO 255 IF (.NOT.DISK) GOTO 252 IF ((OUT.EQ.0).OR.(OUT.EQ.2)) GOIO 255 252 IF ((OUT.EQ.1).OR.(OUT.EQ.2)) GOTO 260 IF (SCREEN) GOTO 450 255 SCREEN=.TRUE. WRITE (11,575) IF (OUT.NE.2) GOTO 450 IF (DISK) GOTO 450 26Ø DISK= TRUE WRITE (2,575) **4**5Ø IF (.NOT. DATSET) GOTO 501 C----- interpolation? WRITE (11,560) 475 WRITE (11,552) 500 READ (11, 525, ERR=475) ANS ANSR = ERCHK (ANS) IF (ANSR) GOTO 500 IF (ANS .EQ. Ø) INTERP = .TRUE. IF (ANS .EQ. 1) INTERP = .FALSE. GOTO 502 501 INTERP = .FALSE. C---- call to ATTEN IF (.NOT. (DATSET)) CALL ATTEN (ATM, ALT, AER, DATSET, INTERP, OUT) C---- call to BUILDVEC 502 IF (DATSET) CALL BUILDVEC (DATSET, INTERP, OUT) C----- continue program? IF (OUT .EQ. 10) GOTO 505 IF (OUT .EQ. 11) GOTO 506 C----- terminate IF (OPEN2) WRITE (11, 650) STOP --- continue C----5Ø5 DATSET = .TRUE. GOTO 125 506 GOTO 9 FORMAT (11) FORMAT (/"WILL YOU BE ENTERING DATA SINGLY (0),"/ 525 55Ø " OR AS A SET (1)?") FORMAT (/"ENTER Ø OR 1") 552 FORMAT (/"PRINT OPTION:"/3X,"0: RESULTS TO SCREEN ONLY" /3X,"1: RESULTS TO DISKFILE"/3X,"2: RESULTS TO BOTH",Z, " SCREEN AND DISKFILE") 554 556 FORMAT (/"ENTER Ø,1, OR 2") FORMAT (/"IF USER-SPECIFIED HEIGHT FALLS AT THE MIDPOINT"/ 56Ø "BETWEEN TWO DATA VALUES, THE PROGRAM INTERPOLATES"/ Ś "LINEARLY. IN OTHER CASES, DO YOU WANT INTERPOLATION (\emptyset) "/ "OR DO YOU WANT THE COEFFICIENTS AT THE NEAREST"/ Ś "AVAILABLE HEIGHT (1)?") FORMAT ("ATTENUATION COEFFICIENTS AS A FUNCTION OF ALTITUDE", 575 /T15, "LAMBDA = $\emptyset.6943$ MICRONS", / "Source: 'Optical Properties of the Atmosphere',"/3X,"McClatchey," "Fenn, Selby, Volz, Garing, (1971)."//T8,"KtM = MOLECULAR ABSORPTION", Ś /T8, "SAM = MOLECULAR SCATTERING", /T8, "KA = AEROSOL ABSORPTION", /T8, "S^A = AEROSOL SCATTERING",// Ś /"VALUES OF ZERO INDICATE A COEFFICIENT LESS THAN E-06", /"'***' PRECEDE INTERPOLATED VALUES") 650 FORMAT ("CHECK 'ATTENOUT' FOR OUTPUT. REMEMBER TO RENAME THIS FILE.") END

C----- Opens and reads one of the two aerosol files. C----- The files contain absorption and scattering C----- coefficients for aerosols as a function of altitude C----- in the range \emptyset - 85 km. C----- Non-standard Format Code (statement labels): 263 DIMENSION AERABS(33), AERSCAT(33) INTEGER AER C---- open AER IF (AER .EQ. 0) OPEN 0, "AERXCLR", ERR = 250IF (AER .EQ. 1) OPEN 0, "AERXHAZ", ERR = 260C---- read AER DO 60 I = 1, 33READ (0,263) AERABS(I), AERSCAT(I) 6Ø CONTINUE CLOSE Ø RETURN WRITE (11, 261) 25Ø STOP WRITE (11, 262) 26Ø STOP FORMAT (/"ERROR OPENING AERXCLR") FORMAT (/"ERROR OPENING AERXHAZ") 261 262 263 FORMAT (2 (2X, 1PE11.4)) END

ł

ŧ

ι

ŧ,

32

```
C----- Opens and reads the 5 atmospheric model files.
C----- The files contain absorption and scattering
C----- coefficients as a function of altitude in the
C---- range Ø - 85 km.
C----- Non-standard Format Code (statement label): 245
         DIMENSION RABS(33), SCAT(33)
         INTEGER ATM
C---- open ATM file
IF (ATM .EQ. 1) OPEN 1, "TROPIC", ERR = 200
IF (ATM .EQ. 2) OPEN 1, "MIDLATSUM", ERR = 210
IF (ATM .EQ. 3) OPEN 1, "MIDLATWIN", ERR = 220
IF (ATM .EQ. 4) OPEN 1, "SUBARCSUM", ERR = 230
IF (ATM .EQ. 5) OPEN 1, "SUBARCWIN", ERR = 240
C----- read ATM file
         DO 35 I = 1, 33
            READ (1,245) RABS(I), SCAT(I)
35
         CONTINUE
CLOSE 1
RETURN
200
         WRITE (11,250)
         STOP
21Ø
         WRITE (11,252)
         STOP
         WRITE (11,254)
22Ø
         STOP
23Ø
         WRITE (11,256)
         STOP
240
         WRITE (11,258)
         STOP
         FORMAT (2 (2X, 1PE11.4))
FORMAT (/"ERROR OPENING TROPIC")
245
25Ø
         FORMAT (/"ERROR OPENING MIDLATSUM")
252
254
         FORMAT (/"ERROR OPENING MIDLATWIN")
         FORMAT (/"ERROR OPENING SUBARCSUM")
256
         FORMAT (/"ERROR OPENING SUBARCWIN")
258
```

END

SUBROUTINE ATTEN (ATM, ALT, AER, DATSET, INTERP, OUT)

C----- ATTEN is called by ATTENCOEF and BUILDVEC. It calls INPT, ATMRD, C----- AERRD, NEAR, and LINTERP. Does all writing to output files. C----- Contains choice for user to start over and enter a new entry mode. C----- Non-standard Format Code (statement label): 7100,7200,9140,9145,9146 C----- Variables C-----133 data arrays C----molecular data: C-----RABS: absorption C-----SCAT: scattering C---aerosol: C----AERABS: absorption C-----AERSCAR: scattering C----logical C-----ATM2, AER2, HEIGHT: determine structural positions C----in the program as well as whether informational text C----has been printed; prevent unnecessary printing C----real C-----ALT: user entered altitude C-----ABS1,ABS2,HT1,HT2,SCAT1,SCAT2: output C-----LINTERP: linear interpolation function integer C-----C-----AERSL: current aerosol model NEAR: function, returns the index of ALT in HT, or the C-----C----index to the next closest value C-----OLDATM: current atmospheric model C-----OUT: print option, multi-usage variable; within ATTEN, its value may change: C-----C-----= 10: return to driver, enter array mode C-----= 11: return to driver with option for new entry mode C-----UNIT: current output unit # DIMENSION HT(33), RABS(33), SCAT(33), AERABS(33), AERSCAT(33) LOGICAL AER2, ATM2, INTERP, DATSET, HEIGHT, Ś ANSR, ERCHK STATIC OLDATM, AERSL/-1/, HT, HEIGHT/.FALSE./, ATM2/.TRUE./ INTEGER OLDATM, ATM, AER, AERSL, OUT, NEAR, ANS, UNIT REAL ALT, HT1, HT2, ABS1, ABS2, SCAT1, SCAT2, LINTERP C----- user finished? IF (OUT .LT. Ø) GOTO 1120 IF (HEIGHT) GOTO 19 C----- open/read height file OPEN 1, "ATTENHT", ERR = 3 GOTO 4 3 WRITE (11,5000) STOP 4 DO 5 I = 1, 33READ (1,4600) HT(I) CONTINUE 5 HEIGHT = .TRUE. CLOSE 1 19 IF (.NOT. DATSET) CALL INPT (DATSET, ATM2, ATM, ALT, AER) IF (ATM.EQ.0) GOTO 1120 IF (OLDATM .NE. ATM) CALL ATMRD (ATM, RABS, SCAT) IF (OLDATM .NE. ATM) GOTO 21 IF (OLDATM .EQ. AIM) AIM2 = .FALSE. GOTO 22 ATM2 = .TRUE. 21 OLDATM = ATM 22 34

ł

٢

IF (AERSL .NE. AER) CALL AERRD (AER, AERABS, AERSCAT) 3Ø IF ((ATM2) .OR. (AERSL .NE. AER)) GOTO 31 IF ((.NOT. ATM2) .OR. (AERSL .EQ. AER)) AER2 = .FALSE. GOTO 32 31 AER2 = .TRUE. AERSL = AER32 C----- call to NEAR J = NEAR (ALT, HT, DATSET, INTERP)IF ((OUT .EQ. 0) .OR. (OUT .EQ. 2)) GOTO 84 IF ((OUT .EQ. 1) .OR. ((OUT .EQ. 2) .AND. (UNIT .EQ. 11))) UNIT = 2 82 \$ GOIO 85 84 UNIT = 1185 IF (ATM2) GOTO 90 IF ((.NOT. ATM2) .AND. (AER2)) GOTO 91 IF ((.NOT. ATM2) .AND. (.NOT. AER2)) GOTO 95 C----- atmosphere model 9Ø WRITE (UNIT, 7100) IF (ATM .EQ. 1) WRITE (UNIT, 9100) IF (ATM .EQ. 2) WRITE (UNIT, 9105) IF (ATM .EQ. 3) WRITE (UNIT, 9110) IF (ATM .EQ. 4) WRITE (UNIT, 9115) IF (ATM .EQ. 5) WRITE (UNIT,9120) GOTO 92 91 IF ((DATSET).OR. ((.NOT. DATSET).AND. (UNIT. EQ. 2))) \$ WRITE (UNIT, 7000) ---- aerosol C---92 WRITE (UNIT, 7200) IF (AER .EQ. 0) WRITE (UNIT, 9125) IF (AER .EQ. 1) WRITE (UNIT, 9130) C---- column headings WRITE (UNIT, 9135) C----- if j not negative, don't interpolate 95 IF (J .GE. Ø) GOTO 140 IF ((OUT .EQ. 2) .AND. (UNIT .EQ. 2)) GOTO 139 J = ABS (J)HT1 = HT(J)HT2 = HT(J+1)C---- call to LINTERP ABS1 = LINTERP (HT1, HT2, RABS(J), RABS(J+1), ALT) SCAT1 = LINTERP (HT1, HT2, SCAT(J), SCAT(J+1), ALT) ABS2 = LINTERP (HT1, HT2, AERABS(J), AERABS(J+1), ALT) SCAT2 = LINTERP (HT1, HT2, AERSCAT(J), AERSCAT(J+1), ALT) C----- write interpolated coefficients 139 WRITE (UNIT, 9140) WRITE (UNIT, 9145) ALT, ABS1, SCAT1, ABS2, SCAT2 IF ((.NOT.DATSET).AND. (OUT .EQ. 1)) WRITE (11,5100) J = -JGOTO 141 C----- write coefficients 140 WRITE (UNIT, 9146) HT(J), RABS(J), SCAT(J), AERABS(J), AERSCAT(J) IF ((.NOT.DATSET).AND.(OUT .EQ. 1)) WRITE (11,5100) C----- check output option - writing done? IF ((OUT .EQ. 2) .AND, (UNIT .EQ. 11)) GOTO 82 141 IF (DATSET) GOTO 1100 C----- another height? WRITE (11,5400) WRITE (11,5200) 143 READ (11,4800,ERR=143) ANS 145 ANSR = ERCHK (ANS) IF (ANSR) GOTO 145

C---- no IF (ANS .EQ. 0) GOTO 154 C---- yes ATM2 = .FALSE. CALL INPT (DATSET, ATM2, ATM, AL/T, AER) GOTO 3Ø C----- another atm? 154 WRITE (11,5600) 155 WRITE (11,5200) 156 READ (11,4800,ERR=155) ANS ANSR = ERCHK (ANS) IF (ANSR) GOTO 156 C---- no IF (ANS .EQ. 0) GOTO 1000 C----- yes $\overline{A}TM2 = .TRUE.$ GOTO 19 C----- start over? (from single entry mode) 1000 WRITE (11,5800) WRITE (11,5200) 1001 1002 READ (11, 4800, ERR = 1001) ANS ANSR = ERCHK (ANS) IF (ANSR) GOTO 1002 C----- no IF (ANS .EQ. 0) GOTO 1200 C----- yes $OLDATM = \emptyset$ ATM2 = TRUE. AERSL = -1 OUT = 10RETURN 1100 RETURN C---- start over? (from array entry mode) 1120 WRITE (11,6000) WRITE (11,5200) READ (11, 4800,ERR = 1130) ANS 1130 1140 ANSR = ERCHK (ANS) IF (ANSR) GOTO 1140 C---- no IF (ANS .EQ. Ø) GOTO 1200 C---- yes OLDATM = Ø ATM2 = .TRUE. AERSL = -1IF (OUT .EQ. $-1\emptyset$) OUT = \emptyset IF (OUT .I.T. \emptyset) OUT = ABS(OUT) OUT = 11RETURN C---- terminate 1200 RETURN FORMAT (F4.1) 4600 FORMAT (I1) 4800 FORMAT (/"ERROR OPENING ATTENHT") 5000 FORMAT (/"COMPLETED") 5100 FORMAT (/"ENTER Ø OR 1") 5200 FORMAT (/"WOULD YOU LIKE ANOTHER HEIGHT? (Ø=NO, 1=YES)") 5400 FORMAT (/"WOULD YOU LIKE A DIFFERENT ATMOSPHERE? (Ø=NO, 1=YES)") 5600 FORMAT (/"WOULD YOU LIKE TO CONTINUE, BUT ENTER"/ 5800 "YOUR DATA INTO AN ARRAY? (Ø=NO, 1=YES)") \$ 6000 FORMAT (/"WOULD YOU LIKE TO START OVER? (Ø=NO, 1=YES)") 7000 FORMAT () FORMAT (//"ATMOSPHERE:",Z) 7100 FORMAT ("AEROSOL:",Z) 7200 9100 FORMAT ("TROPICAL") FORMAT ("MIDLATITUDE SUMMER") 9105 911Ø FORMAT ("MIDLATITUDE WINTER") FORMAT ("SUBARCTIC SUMMER") 9115 9120 FORMAT ("SUBARCTIC WINTER") FORMAT ("CLEAR"/) 9125 FORMAT ("HAZY"/) 913Ø FORMAT (4X, "HT(KM)", 4X, "K^M(KM**-1)", 4X, "S^M(KM**-1)", 4X, "K^AA(KM**-1)", 4X, "S^A(KM**-1)", /) 9135 \$
 4X, K/A (Market 1), 947, 500 (Market 1)

 FORMAT ("***", Z)

 FORMAT (2X, F5.2, 4 (5X, 1PE10.2))
 914Ø 9145 9146 FORMAT (5X,F5.2,4(5X,1PE10.2)) END

1

C----- When DATSET is true, BUILDVEC is called by ATTEN to C----- create the user-entered array. BUILDVEC calls INPT C----- and ATTEN. The maximum array size is 50. C----- WARNING: If the user does not enter at least one value C----- the array, the program terminates immediately. INTEGER ATMVEC (50), AERVEC (50) DIMENSION ALTVEC (50) INTEGER ATM, AER, VECSIZ, OUT REAL ALT LOGICAL ATM2, DATSET, INTERP ATM2 = .FALSE.C----- entry specifications WRITE (11,310) C----- create array DO 100 K = $\overline{1}$, VECSIZ READ (11,312, ERR = 80) ATM IF (ATM.EQ.0) GOTO 110 75 READ (11, 313, ERR=85) ALT READ (11, 312, ERR=90) AER 76 77 C----- call to INPT C----- Note that when INPT is called from BUILDVEC, all variables C----- in the parameter list are input variables. CALL INPT (DATSET, ATM2, ATM, ALT, AER) ATMVEC(K) = ATMALTVEC(K) = ALTAERVEC(K) = AERWRITE (11,315) GOTO 100 8Ø WRITE (11,320) GOIO 75 85 WRITE (11, 321) GOTO 76 WRITE (11, 322) GOTO 77 90 CONTINUE 100 GOTO 199 110 IF (K.EQ.1) GOTO 111 VECSIZ = K - 1GOTO 199 111 WRITE (11,400) STOP Ccall to ATTEN 199 DO 200 K = 1, VECSIZCALL ATTEN (ATMVEC(K), ALTVEC(K), AERVEC(K), DATSET, INTERP, OUF) 200 CONTINUE IF (OUT.EQ.1) WRITE (11, 330) C----- prepare for termination IF (OUT .EQ. \emptyset) GOTO 25 \emptyset IF (OUT .NE. \emptyset) OUT = -OUT GOTO 3ØØ OUT = -10250 300 CALL ATTEN (ATM, ALT, AER, DATSET, INTERP, OUT) RETURN FORMAT (/"ATMOSPHERIC MODELS ARE:"/3X,"1 - TROPICAL"/3X, 310 "2 - MIDLATITUDE SUMMER"/3X,"3 - MIDLATITUDE WINTER"/3X, "4 - SUBARCTIC SUMMER"/3X,"5 - SUBARCTIC WINTER"// Ś Ş "ENTER: 1. # OF ATMOSPHERIC MODEL (1-5)"/7X, \$ \$ "2. ALTITUDE IN km (0.0 - 85.0)"/11X, "AN ALTITUDE OTHER THAN ZERO THAT IS A WHOLE NUMBER"/11X, "MUST BE ENTERED WITH A DECIMAL, E.G. '12' WOULD BE"/11X, \$ \$ \$ \$ \$ \$ \$ \$ \$ "ENTERED AS '12.0'."/7X, "3'. AEROSOL TYPE - CLEAR (Ø) OR HAZY (1)"// "ENTER EACH VALUE ON A SEPARATE LINE. AFTER THE THIRD"/ "VALUE IN EACH SET HAS BEEN ENTERED, WAIT FOR THE"/ "PROMPT, '\$', THEN CONTINUE."// "WHEN YOU WISH TO STOP ENTERING VALUES, ENTER A ZERO"/ "AFTER YOU RECEIVE THE PROMPT.") Ś

312		FORMAT (II)
313		FORMAT (F5.2)
315		FORMAT ("\$")
32Ø		FORMAT (/"RE-ENTER ATMOSPHERE")
321		FORMAT ("RE-ENTER ALTITUDE")
322		FORMAT ("RE-ENTER AEROSOL")
330		FORMAT (/"COMPLETED")
400		FORMAT ("ERROR: THERE MUST BE AT LEAST ONE SET OF VALID "/
	Ş	"ENTRIES IN THIS ARRAY. PROGRAM TERMINATED")

END

FUNCTION ERCHK (ANS)

C----- Checks for errors in user answers. In general, C----- \emptyset = NO and 1 = YES. C----- Note that on some systems inputting '+', '-', or '.' is C----- identical to inputting a zero.

t

ŧ

.

LOGICAL ERCHK INTEGER ANS

IF ((ANS .NE. 0) .AND. (ANS .NE. 1)) GOTO 10 ERCHK = .FALSE. RETURN

1ø	ERCHK = $.$ TRUE.	
	WRITE (11, 20)	
	RETURN	
20	FORMAT (/"INCORRECT ENTRY.	ENTER Ø OR 1")

END

SUBROUTINE INPT (DATSET, ATM2, ATM, ALT, AER)

C----- INPT is called by BUILDVEC to check for user input error, C----- and by ATTEN to obtain the ATM, ALT, and AER from the user C----- when the program is in single entry mode. C----- Note that when INPT is called from within BUILDVEC, 'ATM,ALT, C----- AER' are input variables; when called from within ATTEN, these C----- variables are output variables. LOGICAL ATM2, DATSET INTEGER ATM, AER REAL ALT IF (DATSET) GOTO 15 IF (.NOT. ATM2) GOTO 350 WRITE (11, 420) C----- input atmospheric type WRITE (11, 425) READ (11, 410, ERR=20) ATM 14 15 IF ((ATM .NE. 1).AND.(ATM .NE. 2) .AND. (ATM .NE. 3) .AND. (ATM .NE. 4) Ś .AND. (ATM .NE. 5)) GOTO 20 GOTO 30 2Ø WRITE (11, 430) GOTO 14 3Ø IF (DATSET) GOTO 352 C----- input altitude 35Ø WRITE (11, 435) READ (11, 415, ERR = 355) ALT IF ((ALT .GT. 85.0) .OR. (ALT .LT. 0.0)) GOTO 355 351 352 IF (DATSET) GOTO 402 GOTO 400 WRITE (11, 440) 355 GOTO 351 C---input aerosol WRITE (11, 445) 400 READ (11, 410, ERR=400) AER 401 402 IF ((AER .NE. 0).AND. (AER .NE. 1)) GOTO 403 RETURN WRITE (11, 450) 4Ø3 GOTO 401 FORMAT (I1) 410 FORMAT (F5.2) 415 420 FORMAT (/"ATMOSPHERIC MODELS ARE:"/7X,"1 - TROPICAL"/7X, "2 - MIDLATITUDE SUMMER"/7X,"3 - MIDLATITUDE WINTER"/7X, "4 - SUBARCTIC SUMMER"/7X,"5 - SUBARCTIC WINTER"//) \$ FORMAT (/"ENTER THE NUMBER OF THE ATMOSPHERE YOU WOULD LIKE") 425 FORMAT (/"RE-ENTER ATMOSPHERIC MODEL") 43Ø FORMAT (/"ENTER ALTITUDE IN km (0.0 - 85.0)"/7X, 435 "AN ALTITUDE OTHER THAN ZERO THAT IS A WHOLE NUMBER"/7X, "MUST BE ENTERED WITH A DECIMAL, E.G. '12' WOULD BE"/7X, "ENTERED AS '12.0") \$ 440 FORMAT (/"RE-ENTER ALTITUDE (0.0 TO 85.0)") FORMAT (/"AEROSOL: CLEAR (Ø) OR HAZY (1)? ENTER Ø OR 1") 445 FORMAT (/"RE-ENTER AEROSOL: CLEAR (Ø) OR HAZY (1)?") 450

END

<u>i</u>,

FUNCTION LINTERP (DAT1, DAT2, RES1, RES2, X)

C----- DAT and RES correspond to 'data' and 'result', and C----- constitute an ordered pair. X is the known value for C----- which a Y is needed. LINTERP determines Y by linear C----- interpolation.

REAL DAT1, DAT2, RES1, RES2, X, LINTERP

Y = ((X - DAT1) * (RES2 - RES1)/(DAT2 - DAT1)) + RES1 LINTERP = Y

,

t

÷

¢

RETURN END

1

FUNCTION NEAR (ALT, HT, DATSET, INTERP)

	······································
C _ C C _ C _	NEAR searches for the value equal or closest to ALT in the array HT. HT is sorted in increasing order. In the case of an exact match, NEAR returns the index of the value in HT. If a match does not exist and the user has asked for interpolation, NEAR returns the negative index of the value in HT which is closest to ALT. If interpolation is not requested, the positive index is returned, and the program outputs the coefficients at that closest value. If ALT is the midpoint between 2 HT values, a negative index is returned, and the program interpolates. If the user is in single entry mode, NEAR offers a choice between interpolation or the coefficients at the closest value. If the user is entering data as an array, this choice is made earlier in the driver ATTENCOEF.
¢ C	DIMENSION HT(33) INTEGER ANS,NEAR LOGICAL ANSR,ERCHK,INTERP, DATSET search for ALT in HT
10	DO 10 I = 1, 32 IF ((HT(I) .LT. ALT) .AND. (HT(I+1) .GT. ALT)) GOTO 20 IF (HT(I) .EQ. ALT) GOTO 36 CONTINUE
20	IF (INTERP) GOTO 50 IF ((ALT - HT(I)) .LT. (HT(I+1) - ALT)) GOTO 30 IF ((ALT - HT(I)) .EQ. (HT(I+1) - ALT)) GOTO 50 IF ((ALT - HT(I)) .GT. (HT(I+1) - ALT)) GOTO 21
21 24 25 26	IF (DATSET) GOTO 26 WRITE (11,45) HT(I+1) WRITE (11, 70) READ (11, 40, ERR = 24) ANS ANSR = ERCHK (ANS) IF (ANSR) GOTO 25 IF (ANS .EQ. \emptyset) GOTO 50 NEAR = I+1 GOTO 60
30 31 34 36	IF (DATSET) GOTO 36 WRITE (11, 45) HT(I) WRITE (11, 70) READ (11, 40, RRR=31) ANS ANSR = ERCHK (ANS) IF (ANSR) GOTO 34 IF (ANS .EQ. \emptyset) GOTO 50 NEAR = I GOTO 60
40 45 50 60 70 \$	FORMAT (I1) FORMAT ("THE CLOSEST HT IN KM IS ",F4.1) NEAR = -I RETURN FORMAT ("DO YOU WANT AN INTERPOLATION (0) OR THE "/ "COEFFICIENTS (1) AT THIS VALUE? ENTER 0 OR 1") END 40

C----- Program MICRO

C _____

 $C{\mbox{------}}$ Program MICRO gives the refractive indices for ice $C{\mbox{------}}$ and water in the microwave region.

C----- The following list describes all non-standard FORTRAN C----- characteristics in the Handbook programs. For easy access, C----- their occurrences within the routines are marked by a "C" C----- in column one, followed by a series of signs: '+'. Format C----- statements in which non-standard format codes appear are C----- listed in the comment section, 'Non-standard Format Codes'.

C----- General Suggestions for Improvement: Due to the need to C----- standardize the programs, it was necessary to format inter-C----- active input. This often presents awkward restrictions for C----- the user. It is advised that, if available, free-formatted reads C----- be implemented to handle numerical input. In addition, the C----- use of one standard output filename for all program runs is C----- impractical and potentially hazardous. Although the 'A' C----- attribute will provide protection against overwriting on. C----- It is advisable that something such as a temporary alternative. C------ be used to allow character input, in particular, for the C------ interactive naming of output files.

C----- Additionally, individual users should implement precautions C----- against careless user inputting, such as illegal characters. The C----- program contains only minor precautions. The user should beware C----- that some systems accept entry of a carriage return or a C----- mathematical sign character (+,-) or decimal as if a zero had C----- been entered.

C----- Non-standard FORTRAN options:

C

C----- STATIC: The STATIC option places all non-COMMON variables and C----- arrays in a fixed area in memory, rather than on the run-time C----- stack. It initializes all static variables to zero at load time, C----- unless you data-initialize them. You may retrieve the values of C----- static variables within a subprogram upon re-entry to the C----- subprogram for the second and subsequent times.

C----- OPEN, CLOSE, and REWIND: Although the purpose of these C----- input/output statements is obvious, their implementation C----- may differ from system to system. The 'OPEN' statement used C----- with the 'ATT=A' option specifies that appending is to be C----- performed onto the file associated the the channel opened. C----- This protects against overwriting the previous contents of the C----- file, if any existed. REWIND repositions the record pointer to C----- the beginning of the specified file.

C----- 'P' and 'Z' format code: The scale factor 'P' changes the C----- location of the decimal point in the external representation C----- of a real number, with respect to its internal value. The C----- format is 'nP', where 'n' is an integer constant that specifies C----- the number of positions you want to move the decimal point to C----- the right. 'Z' format code suppresses the newline character C----- on output of the current record. It is represented internally, C----- its presence should be considered if any of these files are C----- edited.

C----- Non-Standard Format Codes (statement numbers): 90 C ------

C----- Special Input Format Procedures: C C----- When entering wavelength data, use exponential notation C----- of the form "digit'E'exponent", where C-----: 'digit' is any number. The number must include C----a decimal and must occupy 4 spaces; : 'E' is the letter 'E'; : 'exponent' is a signed or unsigned integer constant. C-----'exp' must occupy 2 spaces. C-----C----- EXAMPLES: NUMBER YOU ENTER C---------____ C-----2E6 2,00E06 C----2E-6 2.00E-6 C-----275E-8 275.E-8, 2.75E-6, etc. C---- User Options С C----- - desired temperatures entered singly or as an array C------ print output to screen and/or diskfile C----- Output - output diskfile named "MICOUT"; should be renamed after each run С C---- File unit #s C C-----1: data file (h2o or ice) C-----2: diskfile C----11: terminal C----- Data Files used: С C-----RFICEMN50, RFICEMN30, RFICEMN10, RFICEM0, RFH20MN8, RFH20M0, C-----RFH20M10, RFH20M18, RFH20M20, RFH20M30, RFH20M40, RFH20M50, C-----RFH2OM60, RFH2OM75 C----- Subroutines C C-----DAT: reads indices data into arrays H2OPEN: opens h2o data file C-----C-----H2OTEMP: checks temperature validity HEADER: prints informational header C----~ C-----ICEOPEN: opens ice data file C-----ICETEMP: checks temperature validity INTERP: uses linear interpolation to build C-----C----output arrays C-----INTVEC: builds a user-entered integer array C-----KEY: prints variable key LINTERP: two-point linear interpolation C-----C-----RD: transfers a data array to output C-----READANS: checks user answers for error C-----RFPRINT: prints output arrays SUBHDR: prints substance and temperature C-----C-----TEMPCHK: checks temperature array for errors C----VECTOR: builds user-entered real array C----- Arrays С C----- Input C-----DATIMAG: imaginary index data DATREAL: real index data C-----C----DATVEC: wavelength data C-----MICFIL: character array; used to transfer C----data arrays to output TEM: temperature C----C---- Output IMAG: imaginary indices (in general, interpolated) C----C-----LAM: wavelength C-----RFREAL: real indices (in general, interpolated) C----C----- Variables C -----C-----Logical CHK: used in checking temperature validity C-----C-----DATSET: indicates whether temps. are being C----entered singly or as an array H2O, ICE: indicate current substance C-----OPEN2: indicates whether unit 2 is open C-----

ł

C----- Integer ANS: user answer ----DATSIZ: length of current data array C-----MICOUT: output filename LAMLEN: length of user wavelength array C-----C-----OUT: indicates print option C-----TEMP: temperature TEMPLEN: length of temperature array C-----С Suchi Psarakos č ¢ N.O.A.A. 325 Broadway Ċ R/E/WP2 С Boulder, Colorado 80303 С Please direct questions to Dr. Vernon Derr, (303) 497-6002, С or Suchi Psarakos, (303) 497-5361. LOGICAL OPEN2, H2O, ICE, DATSET, CHK, H2OTEMP, ICETEMP DIMENSION MICFIL(29), DATVEC(23), \$ DATREAL(23), DATIMAG(23), RFREAL(50) INTEGER ANS, OUT, TEMPLEN, TEMP, LAMLEN, DATSIZ, TEM (50), MICOUT REAL LAM(50), IMAG(50) C----- initialize CALL HEADER (Ø) WRITE (11, 98) OPEN2=.FALSE. C---- print option WRITE (11,90) WRITE (11,91) 5 READ (11,95,ERR=8) ANS IF ((ANS .NE, 0).AND. (ANS.NE.1).AND. (ANS.NE.2)) GOTO 8 OUT = ANSIF ((OUT.EQ.1).OR. (OUT.EQ.2).AND. (.NOT.OPEN2)) GOTO 6 GOTO 9 C----- name for output file? 6 OPEN 2, "MICOUT", ATT="A" OPEN2 = .TRUE. IF ((OUT.EQ.1).OR.(OUT.EQ.2)) CALL HEADER (1) GOTO 9 -- incorrect entry C-8 WRITE (11,94) WRITE (11,91) GOTO 5 C----- substance? g WRITE (11,100) WRITE (11,125) CALL READANS (ANS) IF (ANS.EQ.0) GOTO 20 C----- ice ICE = .TRUE. H2O = .FALSE.GOTO 30 C---- h2o 2Ø H2O=.TRUE. ICE=.FALSE. C---- entry mode? 3Ø WRITE (11,225) WRITE (11,125) CALL READANS (ANS) IF (ANS.EQ.Ø) GOTO 40 C----- data set DATSET=.TRUE. WRITE (11, 150) IF (H2O) WRITE (11, 175) IF (ICE) WRITE (11, 200) WRITE (11,1000) CALL INTVEC (H2O, TEMPLEN, TEM) IF (TEMPLEN.LT.0) GOTO 89 CALL TEMPCHK (TEM, TEMPLEN, ICE)

43

C	- begin DO DO 72 I=1,TEMPLEN TEMP=TEM(I) GOTO 47
40	- single entry mode DATSET=.FALSE. - enter temperature WRITE (11,150) IF (ICE) GOTO 43 WRITE (11, 175)
42	WRITE (11, 1000) READ (11, 96, ERR=46) TEMP CHK=H2OTEMP(TEMP) GOTO 45
43	WRITE (11, 200) WRITE (11, 1000)
44	READ (11, 97, ERR=46) TEMP CHK=ICETEMP(TEMP)
45	IF (.NOT.CHK) GOTO 46
46	GOTO 47 WRITE (11,1001) IF (H2O) GOTO 42 GOTO 44
47	IF (ICE) CALL ICEOPEN (TEMP) IF (H2O) CALL H2OPEN (TEMP) CALL SUBHDR (-OUT,TEMP,ICE) CALL KEY (Ø) CALL RD (11, MICFIL)
Ċ	save values? IF (OUT.EQ.0) GOTO 50 WRITE (11,1100) WRITE (11,125) CALL READANS (ANS) IF (ANS.EQ.0) GOTO 50 CALL SUBHDR (1,TEMP,ICE) CALL KEY (1) CALL RD (2, MICFIL) WRITE (2,999)
50 C +++++	interpolation? WRITE (11,1200) WRITE (11,125) CALL READANS (ANS) IF (ANS.EQ.1) GOIO 68 +++++++++ CLOSE 1 ++++++++ IF (DATSET) GOIO 70
	<pre>GOTO 69 yes; create wavelength array,prepare data array,interpolate IF (ANS.EQ.1) WRITE (11,1300) CALL VECTOR (LAMLEN, LAM) IF (LAMLEN.LT.0) GOTO 89 CALL DAT (DATVEC,DATREAL,DATIMAG,DATSIZ) CALL INTERP (LAM,LAMLEN,DATVEC,DATREAL,DATIMAG, DATSIZ, RFREAL,IMAG) CALL SUBHDR (OUT,TEMP,ICE) CALL KEY (OUT) CALL RFPRINT (LAM,LAMLEN,RFREAL,IMAG,OUT) IF (OUT.EQ.1 WRITE (11,250) IF (DATSET) GOTO 70</pre>
C 69 C 70 72	another temp? WRITE (11,1400) WRITE (11,125) CALL READANS (ANS) IF (ANS.EQ.0) GOTO 74 GOTO 41 end DO WRITE (11,999) CONTINUE

ç

•

٠

,

C - 74	- different substance? WRITE (11,1500) WRITE (11,125) CALL READANS (ANS) IF (ANS.EQ.0) GOTO 89 GOTO 9
89	IF ((OUT.EQ.1).OR.(OUT.EQ.2)) WRITE (11,1600) STOP
90 \$ 91 94 95 96 97 98 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<pre>FORMAT (/"PRINT OPTION:"/3X,"0: RESULTS TO SCREEN ONLY" /3X,"1: RESULTS TO DISKFILE"/) FORMAT ("ENTER 0, 1, OR 2") FORMAT ("ENTER 0, 1, OR 2") FORMAT ("INCORRECT ENTRY") FORMAT (I1) FORMAT (I2) FORMAT (I3) FORMAT (I3) FORMAT (I3) FORMAT (I3) FORMAT ('USE EXPONENTIAL NOTATION OF THE FORM 'digit'E'exponent'"/ "WHERE"/7X, ": 'digit' IS ANY NUMBER. THE NUMBER MUST INCLUDE"/10X, "A DECIMAL AND MUST OCCUPY 4 SPACES;"/7X, ": 'E' IS THE LETTER 'E';"/7X, ": 'exponent' IS A SIGNED OR UNSIGNED INTEGER CONSTANT."/10X, "'exp' MUST OCCUPY 2 SPACES."// "EXAMPLES: NUMBER YOU ENTER"/ "</pre>
100 125 150 175 \$ 200 225 \$ 250 999 1000 1001 1100 1200 1300 1400 1500 1600	<pre>FORMAT (/"REFRACTIVE INDICES FOR WATER (0) OR ICE (1)?") FORMAT ("ENTER 0 OR 1") FORMAT ("AVAILABLE TEMPERATURES (degrees C):"/) FORMAT ("AVAILABLE TEMPERATURES (degrees C):"/) FORMAT ("-8"/"0"/"10"/"18"/"20"/"30"/"40"/"50"/"60"/ "75"/) FORMAT ("-50"/"-30"/"-10"/"0"/) FORMAT ("-50"/"-30"/"-10"/"0"/) FORMAT ("MILL YOU BE ENTERING TEMPERATURES SINGLY (0)"/ "OR INTO AN ARRAY (1)?") FORMAT (/"ENTER TEMPERATURE (C):") FORMAT (/"ENTER TEMPERATURE (C):") FORMAT (/"ENTER TEMPERATURE (C):") FORMAT (/"DO YOU WANT THIS FILE SENT TO DISK? (0=NO, 1=YES)") FORMAT (/"ENTER WAVELENGTH (meters):") FORMAT (/"ENTER WAVELENGTH (meters):") FORMAT (/"ENTER WAVELENGTH (meters):") FORMAT (/"WOULD YOU LIKE ANOTHER TEMPERATURE? (O=NO, 1=YES)") FORMAT (/"WOULD YOU LIKE A DIFFERENT SUBSTANCE? (0=NO, 1=YES)") FORMAT (/"CHECK 'MICOUT' FOR OUTPUT, REMEMBER TO RENAME THIS FILE.") END</pre>

SUBROUTINE DAT (DATVEC, DATREAL, DATIMAG, DATSIZ)

.

C----- Reads values from data file into arrays

C----- Non-standard Format Code (statement number): 23

C C	output - integer
	DIMENSION DATVEC(23), DATREAL(23), DATIMAG(23) INTEGER DATSIZ
	DO 10 I=1,23
	READ $(1, 23, \text{ERR} \approx 21, \text{END} = 2\emptyset)$ DATVEC (1) , DATREAL (1) ,
\$	DATIMAG(I)
10	DATSIZ = DATSIZ+1 CONTINUE
10	CONTINOS
C++++++	┝╊╋╋╋╋╋╋
20	CLOSE 1
C++++++	╘┾╆┾╅┼╅╉┾
	DATSIZ=I-1
21	RETURN
22	WRITE (11,22) FORMAT ("ERR READING DATFILE")
23	FORMAT $(5x, 3(2x, 1) = 13.6)$
	STOP
	END

C----- opens h2o data file

INTEGER TEMP

C+++++++++	╄╊╄╋╞╊			
IF	(TEMP.EQ.	- 8)	OPEN	1,"RFH2OMN",ERR=1000
ĨF	(TEMP.EQ.	Ø)	OPEN	1, "RFH2OMØ", ERR=1500
IF	(TEMP.EQ.	10)	OPEN	1,"RFH2OM10",ERR=2000
IF	(TEMP.EQ.	18)	OPEN	1,"RFH2OM18",ERR=2500
IF	(TEMP.EQ.	20)	OPEN	1, "RFH2OM20", ERR=3000
IF	(TEMP.EQ.	30)	OPEN	1,"RFH2OM30",ERR=3500
IF	(TEMP.EQ.	40)	OPEN	1,"RFH2OM40",ERR=4000
IF	(TEMP.EQ.	5Ø)	OPEN	1,"RFH2OM50",ERR=4500
IF	(TEMP.EQ.	60)	OPEN	1, "RFH2OM60", ERR=5000
IF	(TEMP.EQ.	75)	OPEN	1,"RFH2OM75",ERR=5500
C+++++++++	╊╇╋╊╊╊			

RETURN

1000	WRITE (11,1001) STOP
1500	STOP WRITE (11,1501) STOP
2000	STOP WRITE (11,2001) STOP
25ØØ	WRITE (11,2501) STOP
3000	WRITE (11,3001) STOP
3500	WRITE (11,3501) STOP
4000	WRITE (11,4001) STOP
4500	WRITE (11,4501) STOP
5000	WRITE (11,5001) STOP
5500	WRITE (11,5501) STOP
1001	FORMAT ("ERR OPENING RFH20MN8")
1501	FORMAT ("ERR OPENING RFH20MØ")
2001	FORMAT ("ERR OPENING RFH20M10")
2501	FORMAT ("ERR OPENING RFH20M18")
3001	FORMAT ("ERR OPENING RFH20M20")
3501	FORMAT ("ERR OPENING RFH2OM30")
4001	FORMAT ("ERR OPENING RFH2OM40")
4501	FORMAT ("ERR OPENING RFH2OM50")
5001	FORMAT ("ERR OPENING RFH20M6Ø")
5501	FORMAT ("ERR OPENING RFH20M75") END

٠

C----- Checks a user-requested h2o temperature for validity LOGICAL H2OTEMP INTEGER T H2OTEMP= TRUE. IF ((T.NE.-8).AND. (T.NE.0).AND. (T.NE.10).AND. (T.NE.18) AND. (T.NE.20) AND. (T.NE.30) AND. (T.NE.40) AND. (T.NE.50) AND. (T.NE.60) AND. \$ \$ \$ \$ (T.NE.75)) H2OTEMP=.FALSE. RETURN END

SUBROUTINE HEADER (OUT)

C----- Prints informational header

C----- Parameter list C-----

input - integer OUT: print entry option C-----

INTEGER OUT, UNIT

IF (OUT.EQ.0) UNIT=11 IF (OUT.EQ.1) UNIT=2 WRITE (UNIT,100) WRITE (UNIT,200) WRITE (UNIT,300) WRITE (UNIT,400) WRITE (UNIT,500)

RETURN

100		FORMAT ("REFRACTIVE INDICES: MICROWAVE"//"SOURCES:"/
	Ş	"1:RYDE, D. AND J.W. RYDE"/"2:LANE, J.A. AND",
	\$	" J.A. SAXTON"/"4:COLLIE, C.H., J.B. HASTED, AND",
	\$	" D.M. RITSON"/"5:DEIRMENDJIAN, D."/)
200		FORMAT ("-ALPHANUMERIC COLUMNS SHOW SOURCE (REAL)"/3X,"AND",
	\$	" SOURCE(IMAGINARY)")
300		FORMAT ("-NUMBERS ALONE REFER TO SOURCE AND"/
	Ş	3X, "INDICATE EXPERIMENTAL VALUES"/"-'A' REFERS TO VALUES",
	\$	" CALCULATED WITH THE DEBYE FORMULA")
400		FORMAT ("-'**' CORRESPONDS TO INTERPOLATED VALUES")
5ØØ		FORMAT ("-N=REAL, K=IMAGINARY"//)
		END

,

C----- opens ice data file

INTEGER TEMP

IF (TEMP.EQ. -50) OPEN 1, "RFICEMN50",ERR=1000 IF (TEMP.EQ. -30) OPEN 1, "RFICEMN30",ERR=2000 IF (TEMP.EQ. -10) OPEN 1, "RFICEMN10",ERR=3000 IF (TEMP.EQ. 0) OPEN 1, "RFICEM0",ERR=4000 RETURN 1000 WRITE (11,1001) STOP 2000 WRITE (11,2001) STOP 3000 WRITE (11,3001) STOP 4000 WRITE (11,4001) STOP 1001 2001 FORMAT ("ERR OPENING RFICEMN50") FORMAT ("ERR OPENING RFICEMN50")

2001	FORMAT	("ERR	OPENING	REICEMN30")
3001	FORMAT	("ERR	OPENING	RFICEMN10")
4001	FORMAT END	("ERR	OPENING	RFICEM0")

FUNCTION ICETEMP (T)

C----- Checks user-requested ice temperatures for validity

LOGICAL ICETEMP INTEGER T

ICETEMP=.TRUE. IF ((T.NE.-50).AND.(T.NE.-30).AND.(T.NE.-10) \$.AND.(T.NE.0)) ICETEMP=.FALSE. RETURN END

SUBROUTINE INTERP (VEC, VECSIZ, DATVEC, DATREAL, DATIMAG, DATSIZ, RFREAL, IMAG)

Ś

C----- Matches appropriate two neighboring values in the C----- available data wavelength array, DATVEC, to the requested C----- wavelengths in VEC. Calls function INTERP. In the case C----- of a user-request which outlies the endpoint values C----- in DATVEC, the routine substitutes the indices of the C----- appropriate endpoint. The DATVEC array is increasing. C----- Note: Some data arrays have multiple indices for C----- a given wavelength (due to more than one source). C----- The arrays have been arranged such that either the C----- most recent source or the experimental (rather C----- than predicted) values come first. C----- Parameter list C----input - real DATIMAG, DATREAL, DATVEC: imaginary,real, wavelength data arrays C-----C-----VEC: user-entered wavelength array C----input - integer C----VECSIZ, DATSIZ: length of VEC and DATVEC C---output - real C-----IMAG, RFREAL: output imaginary and real arrays C-----DIMENSION VEC(VECSIZ), DATVEC(DATSIZ), DATREAL(DATSIZ), DATIMAG (DATSIZ), RFREAL (VECSIZ) Ś REAL IMAG (VECSIZ), LINTERP INTEGER VECSIZ, DATSIZ DO 100 I=1,VECSIZ DO 15 J=1, (DATSIZ-1) C----- user wavelength out of range IF (DATVEC(J).EQ.VEC(I)) GOTO 25 IF ((DATVEC(1).GT.VEC(I)).OR. \$ DATVEC(DATSIZ).LT.VEC(I)) GOTO 30 IF ((DATVEC(J).LT.VEC(I)).AND. \$ (DATVEC(J+1).GT.VEC(I))) GOTO 20 15 CONTINUE - call to INTERP C---RFREAL(I) = LINTERP(DATVEC(J), DATVEC(J+1), DATREAL(J),2Ø DATREAL (J+1), VEC (I)) Ś IMAG(I)=LINTERP(DATVEC(J), DATVEC(J+1), DATIMAG(J), \$ DATIMAG(J+1), VEC(I)) C----- mark interpolated values for future id. VEC(I) = -VEC(I)GOTO 100 25 RFREAL(I)=DATREAL(J) IMAG(I)=DATIMAG(J) GOTO 100 3Ø IF ((J.NE.1).AND. (DATVEC(DATSIZ).EQ.DATVEC(DATSIZ-1))) GOTO 40 C----- substitute endpoint indices for user request IF (DATVEC(DATSIZ).LT.VEC(I)) J=DATSIZ 32 VEC(I) = DATVEC(J)RFREAL(I)=DATREAL(J) IMAG(I) = DATIMAG(J) GOTO 100 C----- multiple values for a given wavelength; position C----- 'J' at most reliable source 40 J=DATSI2-1 IF (DATVEC(J).EQ.DATVEC(J-1)) GOTO 42 41 GOTO 32 42 I-Tat. GOTO 41 CONTINUE 100 RETURN END

ţ

C----- Creates a user-entered integer array; max. length C----- = 50. Input session is terminated upon entry of a C---- '99'. C----- Note: The program stops if there is not at least one C---- value entered into the array. C----- Non-standard Format Code (statement number): 1100, 1200 C----- Parameter list C-----Input - logical C-----H2O: specifies which substance is being used C-----Input/Output - integer C-----LEN: length of the array C-----Output - integer C-----VEC: integer array INTEGER VEC (50) INTEGER LEN LOGICAL H2O C----- entry procedure WRITE (11,1000) C----- build vector DO 15 I=1,50 WRITE (11,1200) IF (H2O) READ (11, 900, ERR=11) VEC(I) 10 IF (.NOT.H2O) READ (11, 920, ERR=11) VEC(I) IF ((VEC(I).EQ.99).OR. (VEC(I).EQ.990)) GOTO 20 GOTO 15 WRITE (11,1100) 11 GOTO 10 15 CONTINUE GOTO 21 C----- check array length for error; return IF (I.EQ.1) GOTO 22 2Ø LEN = I-1RETURN LEN=I 21 RETURN 22 WRITE (11,1300) LEN≈-1 RETURN 900 FORMAT (12) 920 FORMAT (13) 1000 FORMAT ("ENTER EACH VALUE IN CORRECT UNIT, WAIT FOR"/ "PROMPT ':', THEN CONTINUE. TYPE '99' WHEN FINISHED."/) Ś FORMAT ("INCORRECT ENTRY. PLEASE RE-ENTER"/":",Z) 1100 FORMAT (":",Z) FORMAT ("ERROR: YOU MUST HAVE AT LEAST ONE VALUE"/ 1200 1300 \$ "IN THIS ARRAY. PROGRAM TERMINATED.") END

SUBROUTINE KEY (OUT)

C----- Prints a variable key for output

C	Parameter list
C	input - integer
C	OUT: print entry option

INTEGER UNIT, OUT

IF ((OUT.EQ.Ø).OR.(OUT.EQ.2)) GOTO 10

- GOTO 15 UNIT =11 10
- GOTO 20
- 15 UNIT = 2
- 20
- WRITE (UNIT, 100) IF ((OUT.EQ.2).AND.(UNIT.EQ.11)) GOTO 15 RETURN
- FORMAT (11X,"LAM (m)",14X,"N",14X,"K",3X,"S(N)", 3X,"S(K)"/) 100 \$ END

FUNCTION LINTERP (DAT1, DAT2, RES1, RES2, X)

- C----- 2 point linear interpolation C----- DAT and RES correspond to 'data' and 'result',; and C----- constitute an ordered pair. X is the known value for C----- which a Y is needed. LINTERP determines Y by linear C----- interpolation.

REAL DAT1, DAT2, RES1, RES2, X, LINTERP, Y

Y = ((X - DAT1) * (RES2 - RES1)/(DAT2 - DAT1)) + RES1 LINTERP = Y

RETURN END

SUBROUTINE RD (UNIT, MICFIL)

C----- Transfers a data array to output

C	Non-standard Format Code (statement number): 5000
С	Note that the use of 'A' format code is system dependent.
С	Depending on the system, it will have to be modified
С	according to the form 'xAy', where 'x' is a repetition
С	count, and 'y' represents the number of characters you
С	want read in per computer word (note that the characters
С	will be left-justified, and padded with blanks).

C----- Parameter list C----- input - integer C----- UNIT: the device to which the data file C----- will be written C----- output C----- MICFIL: array used to transfer one C----- of the data arrays to output, line by line

> DIMENSION MICFIL (29) INTEGER UNIT

10 READ (1,5000,END=20) (MICFIL(I), I=1,29) WRITE (UNIT,5000) (MICFIL(I), I=2,29) GOTO 10

20 REWIND 1 C++++++++++++++ RETURN

5000 FORMAT (6X,29A2) END

SUBROUTINE READANS (ANS)

C----- checks user answers for error

INTEGER ANS

5 10	GOTO 10 WRITE (11,100) READ (11,110,ERR=5) ANS IF ((ANS.NE.0).AND.(ANS.NE.1)) GOTO 5		
100 110	RETURN FORMAT ("INCORRECT ENTRY. ENTER Ø OR 1") FORMAT (11)		

END

SUBROUTINE REPRINT (LAM, LEN, REFREAL, IMAG, OUT)

C----- Prints wavelength, real, and imaginary arrays C----- to output. Interpolated values have been marked as C----- negative in the wavelength array.

C----- Non-standard Format Code (statement number): 100, 200, 300

C	Parameter list
C	input - real
C	IMAG, LAM, RFREAL: imaginary, wavelength, and real
C	arrays
C	input – integer
C	LEN: length of output arrays
C	OUT: indicates print option

REAL LAM(LEN), RFREAL(LEN), IMAG(LEN) INTEGER LEN, OUT, UNIT

	DO 10 I=1,LEN IF ((OUT.EQ.0).OR.(OUT.EQ.2)) GOTO 5
	GOTO 6
5	UNIT=11
	GOTO 7
6	UNIT=2
7	IF (LAM(I).GE.Ø) GOTO 8
	WRITE (UNIT, 100)
	LAM(I) = ABS(LAM(I))
	WRITE (UNIT, 300) LAM(I), RFREAL(I), IMAG(I)
	IF $((OUT, EQ. 2), AND. (UNIT, EQ. 11))$ LAM $(I) = -LAM(I)$
	GOTO 9
8	WRITE (UNIT,200) LAM(I),RFREAL(I),IMAG(I)
9	IF ((OUT.EQ.2).AND. (UNIT.EQ.11)) GOTO 6
10	CONTINUE

RETURN

100		("**",Z)
200	FORMAT	(3X,3(2X,1PE13.6),2(3X,""))
300		(1X,3(2X,1PE13.6),2(3X,""))

SUBROUTINE SUBHDR (OUT, TEMP, ICE)

C----- Prints current substance and temperature to output

C----- Non-standard Format Code (statement number): 100, 200

	Parameter list
C	
C	input - integer OUT: indicates print option
C	TEMP: temperature
	LOGICAL ICE INTEGER OUT, TEMP
	IF (OUT.LT.Ø) GOTO 10 IF ((OUT.EQ.Ø).OR.(OUT.EQ.2)) GOTO 10 GOTO 20
10	UNIT = 11 GOTO 40
20	UNIT=2
4Ø	IF (ICE) GOTO 90
	WRITE (UNIT,100) IF (TEMP.EQ8) WRITE (UNIT,300) IF (TEMP.EQ. 0) WRITE (UNIT,400) IF (TEMP.EQ. 10) WRITE (UNIT,500)
	IF (TEMP.EQ. 10) WRITE (UNIT,550) IF (TEMP.EQ. 18) WRITE (UNIT,550) IF (TEMP.EQ. 20) WRITE (UNIT,600)
	IF (TEMP.EQ. 30) WRITE (UNIT, 700) IF (TEMP.EQ. 40) WRITE (UNIT, 800)
	IF (TEMP.EQ. 50) WRITE (UNIT,900) IF (TEMP.EQ. 60) WRITE (UNIT,1000)
	IF (TEMP.EQ. 75) WRITE (UNIT, 1100) GOTO 91
90	WRITE (UNIT,200) IF (TEMP.EO50) WRITE (UNIT,1200)
	IF (TEMP.EQ50) WRITE (UNIT,1200) IF (TEMP.EQ30) WRITE (UNIT,1300) IF (TEMP.EQ10) WRITE (UNIT,1400) IF (TEMP.EQ.0) WRITE (UNIT,400)
91	IF ((OUT.EQ.2).AND. (UNIT.EQ.11)) GOTO 20
	RETURN
100	FORMAT (/"SUBSTANCE: H20", 3X, "TEMP: ",Z)
200 300	FORMAT (/"SUBSTANCE: ICE", 3X, "TEMP: ",Z) FORMAT ("-8"/)
400 500	FORMAT ("0"/) FORMAT ("10"/)
55Ø	FORMAT ("18"/)
600 700	FORMAT ("30"/)
800 900	FORMAT ("40"/) FORMAT ("50"/)
1000 1100	FORMAT ("60"/) FORMAT ("75"/)
1200	FORMAT ("-50"/)
1300 1400	FORMAT ("-30"/) FORMAT ("-10"/)

C----- Checks user-entered temperature array for validity. C----- Calls H2OTEMP or ICETEMP. C----- Non-standard Format Code (statement label): 110 C----- Parameter list input - logical C----C-----ICE: indicates current substance C----input - integer TEMP: temperature array C-----C-----TEMPLEN: length of TEMP array LOGICAL ICE, CHK, H2OTEMP, ICETEMP, MESS INTEGER TEMP (TEMPLEN), T, TEMPLEN, NEWT MESS=.FALSE. DO 20 I=1,TEMPLEN T=TEMP(I)C----- check for valid temperature IF (.NOT.ICE) CHK=H2OTEMP(T) IF (ICE) CHK=ICETEMP(T) C----- invalid IF (.NOT.CHK) GOTO 10 GOTO 20 C----- re-enter correction 10 IF (.NOT.MESS) WRITE (11,100) MESS=.TRUE. WRITE (11,110) T 11 IF (.NOT.ICE) READ (11,130,ERR=15) NEWT 12 IF (ICE) READ (11,135,ERR=15) NEWT IF (((.NOT.ICE).AND. (NEWT.EQ.99)).OR. ((ICE).AND. (NEWT.EQ.990))) \$ GOTO 14 C----- check correction IF (.NOT.ICE) CHK=H2OTEMP(NEWT) IF (ICE) CHK=ICETEMP(NEWT) C----- invalid IF (.NOT.CHK) GOTO 15 TEMP(I)=NEWT GO10 20 C------ reprint available temperatures 14 WRITE (11,150) IF (.NOT.ICE) WRITE (11,175) IF (ICE) WRITE (11,200) GOTO 11 15 WRITE (11,120) GOTO 12 20 CONTINUE RETURN FORMAT (/"INVALID ENTRIES:"/"NOTE: IF YOU NEED TO SEE THE"/ 100 "LISTING OF AVAILABLE TEMPERATURES, TYPE '99' INSTEAD"/ "OF THE CORRECTED VALUE"/) FORMAT (I3,2X,"CORRECTION: ",2) Ś 110 FORMAT ("RE-ENTER") 12Ø 130 FORMAT (12) FORMAT (13) FORMAT ("AVAILABLE TEMPERATURES (degrees C):"/) FORMAT ("-8"/"0"/"10"/"18"/"20"/"30"/"40"/"50"/"60"/ 135 15Ø 175 "75"/) \$

200 FORMAT ("-50"/"-30"/"-10"/"0"/) END

	Creates a user-entered array of exponents; max. length = 50 . Input session is terminated upon entry of '-1'.
	Note: the program stops if there is not at least one value entered into the array.
с 	Non-standard Format Code (statement label): 1100, 1200
C C C	Parameter list input/output - integer LEN: length of array output - real VEC: real array
	DIMENSION VEC (50) INTEGER LEN
C	entry procedure WRITE (11, 950) WRITE (11,1000)
C	build vector DO 15 I=1,50 WRITE (11,1200)
10	READ (11, 900, ERR= 11) VEC(1) IF (VEC(1).LT.0) GOTO 20 GOTO 15
11	WRITE (11,1100) GOTO 10
15	CONTINUE GOIO 21
C 2Ø	check array length for error; return IF (I.EQ.1) GOTO 22 LEN = $I-1$ RETURN
21	LEN=I RETURN
22	WRITE (11,1300) LEN=-1 RETURN
900 950 \$	FORMAT (E7.2) FORMAT ("USE EXPONENTIAL NOTATION OF THE FORM 'digit'E'exponent'"/ "WHERE THE ENTIRE EXPRESSION OCCUPIES 7 SPACES"/)
1000 [°] \$	FORMAT ("ENTER EACH VALUE IN CORRECT UNIT, WAIT FOR"/ "PROMPT ':', THEN CONTINUE. TYPE '-1' WHEN FINISHED."/)
1100 1200	FORMAT ("INCORRECT ENTRY. PLEASE RE-ENTER"/":",Z) FORMAT (":",Z)
1300 \$	FORMAT ("ERROR: YOU MUST HAVE AT LEAST ONE VALUE"/ "THIS ARRAY, PROGRAM TERMINATED")
•	END

Fewer than four UAG Reports are published at irregular intervals each year. Copies of these publications may be purchased through the NATIONAL GEOPHYSICAL DATA CENTER, Solar-Terrestrial Physics Division (E/GC2) 325 Broadway, Boulder, Colorado 80303, USA. A \$4.00 handling charge per order will be added to single-copy price, if any, listed below. Please note, too, that some reports are available on microfiche only. Orders must include check or money order payable in U.S. currency to Commerce, NOAA/NGDC.

- UAG- 1 IQSY NIGHT AIRGLOW DATA, by L.L. Smith, F.E. Roach, and J.M. McKennan, ESSA Aeronomy Laboratory Boulder, CO, July 1968, 305 pp, \$1.75.
- UAG- 2 A REEVALUATION OF SOLAR FLARES, 1964-1966, by Helen W. Dodson and E. Ruth Hedeman, McMath-Hulbert Observatory, University of Michigan, Pontiac, MI, August 1968, 28 pp.
- UAG- 3 OBSERVATIONS OF JUPITER'S SPORADIC RADIO EMISSION IN THE RANGE 7.6-41 MHZ, 6 JULY 1966 THROUGH 8 SEPTEMBER 1968, by James W. Warwick and George A. Dulk, University of Colorado, Boulder, CO, October 1968, 35 pp.
- UAG- 4 ABBREVIATED CALENDAR RECORD 1966-1967, by J. Virginia Lincoln, Hope I. Leighton and Dorothy K. Kropp, ESSA now NOAA, Aeronomy and Space Data Center, Boulder, CO, January 1969, 170 pp, \$1.25.
- UAG- 5 DATA ON SOLAR EVENT OF MAY 23, 1967, AND ITS GEOPHYSICAL EFFECTS, compiled by J. Virginia Lincoln, World Data Center A, Upper Atmosphere Geophysics, ESSA now NOAA, Boulder, CO, February 1969, 120 pp.
- UAG- 6 INTERNATIONAL GEOPHYSICAL CALENDARS 1957-1969, by A.H. Shapley and J. Virginia Lincoln, ESSA Research Laboratories, now NOAA, Boulder, CO, March 1969, 25 pp.
- UAG- 7 OBSERVATIONS OF THE SOLAR ELECTRON CORONA: FEBRUARY 1964 JANUARY 1968, by Richard T. Hansen, High Altitude Observatory, NCAR, Boulder, CO, and Kamuela, HI, October 1969, 12 pp.
- UAG- 8 DATA ON SOLAR-GEOPHYSICAL ACTIVITY OCTOBER 24 NOVEMBER 6, 1968, Parts 1 and 2, compiled by J. Virginia Lincoln, World Data Center A, Upper Atmosphere Geophysics, ESSA now NOAA, Boulder, CO, March 1970, 312 pp, \$1.75 (includes Parts 1 and 2).
- UAG- 9 DATA ON COSMIC RAY EVENT OF NOVEMBER 18, 1968, AND ASSOCIATED PHENOMENA, compiled by J. Virginia Lincoln, World Data Center A, Upper Atmosphere Geophysics, ESSA now NOAA, Boulder, CO, April 1970, 109 pp.
- UAG-10 ATLAS OF IONOGRAMS, edited by A.H. Shapley, ESSA Research Laboratories now NOAA, Boulder, CO, May 1970, 243 pp, \$1.50.
- UAG-12 SOLAR-GEOPHYSICAL ACTIVITY ASSOCIATED WITH THE MAJOR GEOMAGNETIC STORM OF MARCH 8, 1970, Parts 1, 2 and 3, compiled by J. Virginia Lincoln and Dale B. Bucknam, World Data Center A, Upper Atmosphere Geophysics, ESSA now NOAA, Boulder, CO, April 1971, 466 pp, \$3.00 (includes Parts 1-3).
- UAG-13 DATA ON THE SOLAR PROTON EVENT OF NOVEMBER 2, 1969, THROUGH THE GEOMAGNETIC STORM OF NOVEMBER 8-10, 1969, compiled by Dale 8. Bucknam and J. Virginia Lincoln, World Data Center A, Upper Atmosphere Geophysics, ESSA now NOAA, Boulder, CO, May 1971, 76 pp.
- UAG-14 AN EXPERIMENTAL, COMPREHENSIVE FLARE INDEX AND ITS DERIVATION FOR 'MAJOR' FLARES, 1955-1969, by Helen W. Dodson and E. Ruth Hedeman, McMath-Hulbert Observatory, University of Michigan, Pontiac, MI, July 1971, 25 pp.
- UAG-16 TEMPORAL DEVELOPMENT OF THE GEOPHYSICAL DISTRIBUTION OF AURORAL ABSORPTION FOR 30 SUBSTORM EVENTS IN EACH OF IQSY (1964-65) AND IASY (1960), by F.T. Berkey, University of Alaska, Fairbanks, AK; V.M. Driatskiy, Arctic and Antarctic Research Institute, Leningrad, USSR; K. Henriksen, Auroral Observatory, Tromso, Norway; D.H. Jelly, Communications Research Center, Ottawa, Canada; T.I. Shchuka, Arctic and Antarctic Research Institute, Leningrad, USSR; A. Theander, Kiruna Geophysical Observatory, Kiruna, Sweden; and J. Yliniemi, University of Oulu, Oulu, Finland, September 1971, 131 pp, \$1.50 (microfiche only).
- UAG-17 IONOSPHERIC DRIFT VELOCITY MEASUREMENTS AT JICAMARCA, PERU (JULY 1967 MARCH 1970), by Ben B. Balsley, NOAA Aeronomy Laboratory, Boulder, CO, and Ronald F. Woodman, Jicamarca Radar Observatory, Instituto Geofisico del Peru, Lima, Peru, October 1971, 45 pp, \$1.50 (microfiche only).
- UAG-18 A STUDY OF POLAR CAP AND AURORAL ZONE MAGNETIC VARIATIONS, by K. Kawasaki and S.-I. Akasofu, University of Alaska, Fairbanks, AK, June 1972, 21 pp.
- UAG-19 REEVALUATION OF SOLAR FLARES 1967, by Helen W. Dodson and E. Ruth Hedeman, McMath-Hulbert Observatory, University of Michigan, Pontiac, MI, and Marta Rovira de Miceli, San Miguel Observatory, Argentina, June 1972, 15 pp.

- UAG-21 PRELIMINARY COMPILATION OF DATA FOR RETROSPECTIVE WORLD INTERVAL JULY 26 AUGUST 14, 1972, by J. Virginia Lincoln and Hope I. Leighton, World Data Center A for Solar-Terrestrial Physics, NOAA, Boulder, CO, November 1972, 128 pp.
- UAG-22 AURORAL ELECTROJET MAGNETIC ACTIVITY INDICES (AE) FOR 1970, by Joe Haskell Allen, National Geophysical and Solar-Terrestrial Data Center, Boulder, CO, November 1972, 146 pp.
- UAG-23 U.R.S.I. HANDBOOK OF IONOGRAM INTERPRETATION AND REDUCTION, Second Edition, November 1972, edited by W.R. Piggott, Radio and Space Research Station, Slough, UK, and K. Rawer, Arbeitsgruppe fur Physikalische Weltraumforschung, Freiburg, GFR, November 1972, 324 pp, \$1.75.
- UAG-23A U.R.S.I. HANDBOOK OF IONOGRAM INTERPRETATION AND REDUCTION, Second Edition, Revision of Chapters 1-4, edited by W.R. Piggott, Radio and Space Research Station, Slough, UK, and K. Rawer, Arbeitsgruppe fur Physikalische Weltraumforschung, Freiburg, GFR, November 1972, 135 pp, \$2.14.
- UAG-24 DATA ON SOLAR-GEOPHYSICAL ACTIVITY ASSOCIATED WITH THE MAJOR GROUND LEVEL COSMIC RAY EVENTS OF 24 JANUARY AND 1 SEPTEMBER 1971, Parts 1 and 2, compiled by Helen E. Coffey and J. Virginia Lincoln, World Data Center A for Solar-Terrestrial Physics, NOAA, Boulder, CO, December 1972, 462 pp, \$2.00 (includes Parts 1 and 2).
- UAG-25 OBSERVATIONS OF JUPITER'S SPORADIC RADIO EMISSION IN THE RANGE 7.6-41 MHZ, 9 SEPTEMBER 1968 THROUGH 9 DECEMBER 1971, by James W. Warwick, George A. Dulk and David G. Swann, University of Colorado, Boulder, CO, February 1973, 35 pp.
- UAG-26 DATA COMPILATION FOR THE MAGNETOSPHERICALLY QUIET PERIODS FEBRUARY 19-23 AND NOVEMBER 29 DE-CEMBER 3, 1970, compiled by Helen E. Coffey and J. Virginia Lincoln, World Data Center A for Solar-Terrestrial Physics, NOAA, Boulder, CO, May 1973, 129 pp.
- UAG-27 HIGH SPEED STREAMS IN THE SOLAR WIND, by D.S. Intriligator, University of Southern California, Los Angeles, CA, June 1973, 16 pp. 2
- UAG-28 COLLECTED DATA REPORTS ON AUGUST 1972 SOLAR-TERRESTRIAL EVENTS, Parts 1, 2 and 3, edited by Helen E. Coffey, World Data Center A for Solar-Terrestrial Physics, NOAA, Boulder, CO, July 1973, 932 pp, \$4.50.
- UAG-29 AURORAL ELECTROJET MAGNETIC ACTIVITY INDICES AE(11) FOR 1968, by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Boulder, CO, October 1973, 148 pp.
- UAG-30 CATALOGUE OF DATA ON SOLAR-TERRESTRIAL PHYSICS, prepared by NOAA Environmental Data Service, Boulder, CO, October 1973, 317 pp, \$1.75. Supersedes catalogs UAG-11, 15 and 20.
- UAG-31 AURORAL ELECTROJET MAGNETIC ACTIVITY INDICES AE(11) FOR 1969, by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Boulder, CO, February 1974, 142 pp.
- UAG-32 SYNOPTIC RADIO MAPS OF THE SUN AT 3.3 MM FOR THE YEARS 1967-1969, by Earle B. Mayfield, Kennon P. White III, and Fred I. Shimabukuro, Aerospace Corp., El Segundo, CA, April 1974, 26 pp.
- UAG-33 AURORAL ELECTROJET MAGNETIC ACTIVITY INDICES AE(10) FOR 1967, by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Boulder, CO. May 1974, 142 pp.
- UAG-34 ABSORPTION DATA FOR THE IGY/IGC AND IQSY, compiled and edited by A.H. Shapley, National Geophysical and Solar-Terrestrial Data Center, Boulder, CO; W.R. Piggott, Appleton Laboratory, Slough, UK; and K. Rawer, Arbeitsgruppe fur Physikalische Weltraumforschung, Freiburg, GFR, June 1974, 381 pp, \$2.00.
- UAG-36 AN ATLAS OF EXTREME ULTRAVIOLET FLASHES OF SOLAR FLARES OBSERVED VIA SUDDEN FREQUENCY DEVIA-TIONS DURING THE ATM-SKYLAB MISSIONS, by R.F. Donnelly and E.L. Berger, NOAA Space Environment Laboratory; Lt. J.D. Busman, NOAA Commissioned Corps; B. Henson, NASA Marshall Space Flight Center; T.B. Jones, University of Leicester, UK; G.M. Lerfald, NOAA Wave Propagation Laboratory; K. Najita, University of Hawaii; W.M. Retallack, NOAA Space Environment Laboratory and W.J. Wagner, Sacramento Peak Observatory, October 1974, 95 pp.
- UAG-37 AURORAL ELECTROJET MAGNETIC ACTIVITY INDICES AE(10) FOR 1966, by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Boulder, CO, December 1974, 142 pp.
- UAG-38 MASTER STATION LIST FOR SOLAR-TERRESTRIAL PHYSICS DATA AT WDC-A FOR SOLAR-TERRESTRIAL PHYSICS, by R.W. Buhmann, World Data Center A for Solar-Terrestrial Physics, Boulder, CO; Juan D. Roederer, University of Denver, Denver, CO; and M.A. Shea and D.F. Smart, Air Force Cambridge Research Laboratories, Hanscom AFB, MA, December 1974, 110 pp, \$1.60.

- UAG-39 AURORAL ELECTROJET MAGNETIC ACTIVITY INDICES AE(11) FOR 1971, by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Boulder, CO, February 1975, 144 pp, \$2.05.
- UAG-40 H-ALPHA SYNOPTIC CHARTS OF SOLAR ACTIVITY FOR THE PERIOD OF SKYLAB OBSERVATIONS, MAY 1973 -MARCH 1974, by Patrick S. McIntosh, NOAA Space Environment Laboratory, Boulder, CO, February 1975, 32 pp.
- UAG-41 H-ALPHA SYNOPTIC CHARTS OF SOLAR ACTIVITY DURING THE FIRST YEAR OF SOLAR CYCLE 20 OCTOBER 1964 -AUGUST 1965, by Patrick S. McIntosh, NOAA Space Environment Laboratory, Boulder, CO, and Jerome T. Nolte, American Science and Engineering, Inc., Cambridge, MA, March 1975, 25 pp.
- UAG-42 OBSERVATIONS OF JUPITER'S SPORADIC RADIO EMISSION IN THE RANGE 7.6-80 MHZ, 10 DECEMBER 1971 THROUGH 21 MARCH 1975, by James W. Warwick, George A. Dulk and Anthony C. Riddle, University of Colorado, Boulder, CO, April 1975, 49 pp.
- UAG-43 CATALOG OF OBSERVATION TIMES OF GROUND-BASED SKYLAB-COORDINATED SOLAR OBSERVING PROGRAMS, compiled by Helen E. Coffey, World Data Center A for Solar-Terrestrial Physics, NOAA, Boulder, CO, May 1975, 159 pp, \$3.00.
- UAG-44 SYNOPTIC MAPS OF SOLAR 9.1 CM MICROWAVE EMISSION FROM JUNE 1962 TO AUGUST 1973, by Werner Graf and Ronald N. Bracewell, Stanford University, Stanford, CA, May 1975, 183 pp, \$2.55.
- UAG-45 AURORAL ELECTROJET MAGNETIC ACTIVITY INDICES AE(11) FOR 1972, by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Boulder, CO, May 1975, 144 pp, \$1.50 (microfiche only).
- UAG-46 INTERPLANETARY MAGNETIC FIELD DATA 1963-1964, by Joseph H. King, National Space Science Data Center, NASA Goddard Space Flight Center, Greenbelt, MD, June 1975, 382 pp, \$1.95.
- UAG-47 AURORAL ELECTROJET MAGNETIC ACTIVITY INDICES AE(11) FOR 1973, by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Boulder, CO, June 1975, 144 pp, \$1.50 (microfiche only).
- UAG-48A SYNOPTIC OBSERVATIONS OF THE SOLAR CORONA DURING CARRINGTON ROTATIONS 1580-1596 (11 OCTOBER 1971 - 15 JANUARY 1973), [Re-issue of UAG-48 with quality images], by R.A. Howard, M.J. Koomen, D.J. Michels, R. Tousey, C.R. Detwiler, D.E. Roberts, R.T. Seal, and J.D. Whitney, U.S. Naval Research Laboratory, Washington, DC; and R.T. Hansen and S.F. Hansen, C.J. Garcia and E. Yasukawa, High Altitude Observatory, NCAR, Boulder, CO, February 1976, 200 pp, \$4.27. Supersedes UAG-48.
- UAG-50 HIGH-LATITUDE SUPPLEMENT TO THE URSI HANDBOOK ON IONOGRAM INTERPRETATION AND REDUCTION, edited by W.R. Piggott, British Antarctic Survey, c/o Appleton Laboratory, Slough, UK, October 1975, 294 pp, \$4.00.
- UAG-51 SYNOPTIC MAPS OF SOLAR CORONAL HOLE BOUNDARIES DERIVED FROM HE II 304A SPECTROHELIOGRAMS FROM THE MANNED SKYLAB MISSIONS, by J.D. Bohlin and D.M. Rubenstein, U.S. Naval Research Laboratory, Washington, DC, November 1975, 30 pp.
- UAG-52 EXPERIMENTAL COMPREHENSIVE SOLAR FLARE INDICES FOR CERTAIN FLARES, 1970-1974, by Helen W. Dodson and E. Ruth Hedeman, McMath-Hulbert Observatory, University of Michigan, Pontiac, MI, November 1975, 27 pp.
- UAG-53 DESCRIPTION AND CATALOG OF IONOSPHERIC F-REGION DATA, JICAMARCA RADIO OBSERVATORY (NOVEMBER 1966 - APRIL 1969), by W.L. Clark and T.E. Van Zandt, NOAA Aeronomy Laboratory, Boulder, CO, and J.P. McClure, University of Texas at Dallas, Dallas, TX, April 1976, 10 pp.
- UAG-55 EQUIVALENT IONOSPHERIC CURRENT REPRESENTATIONS BY A NEW METHOD, ILLUSTRATED FOR 8-9 NOVEMBER 1969 MAGNETIC DISTURBANCES, by Y. Kamide, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO; H.W. Kroehl, Data Studies Division, National Geophysical and Solar-Terrestrial Data Center, Boulder, CO; M. Kanamitsu, Advanced Study Program, National Center for Atmospheric Research, Boulder, CO; Joe Haskell Allen, Data Studies Division, National Geophysical and Solar-Terrestrial Data Center, Boulder, CO; and S.-I. Akasofu, Geophysical Institute, University of Alaska, Fairbanks, AK, April 1976, 91 pp, \$1.50 (microfiche only).
- UAG-56 ISO-INTENSITY CONTOURS OF GROUND MAGNETIC H PERTURBATIONS FOR THE DECEMBER 16-18, 1971, GEOMAG-NETIC STORM, Y. Kamide, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, April 1976, 37 pp, \$1.39.
- UAG-57 MANUAL ON IONOSPHERIC ABSORPTION MEASUREMENTS, edited by K. Rawer, Institut fur Physikalische Weltraumforschung, Freiburg, GFR, June 1976, 302 pp, \$4.27.

- UAG-58 ATS6 RADIO BEACON ELECTRON CONTENT MEASUREMENTS AT BOULDER, JULY 1974 MAY 1975, by R.B. Fritz, NOAA Space Environment Laboratory, Boulder, CO, September 1976, 61 pp.
- UAG-59 AURORAL ELECTROJET MAGNETIC ACTIVITY INDICES AE(11) FOR 1974, by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Boulder, CO, December 1976, 144 pp, \$2.16.
- UAG-60 GEOMAGNETIC DATA FOR JANUARY 1976 [AE(7) INDICES AND STACKED MAGNETOGRAMS], by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Boulder, CO, July 1977, 57 pp.
- UAG-61 COLLECTED DATA REPORTS FOR STIP INTERVAL II 20 MARCH 5 MAY 1976, edited by Helen E. Coffey and John A. McKinnon, World Data Center A for Solar-Terrestrial Physics, Boulder, CO, August 1977, 313 pp, \$2.95.
- UAG-62 GEOMAGNETIC DATA FOR FEBRUARY 1976 [AE(7) INDICES AND STACKED MAGNETOGRAMS], by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Boulder, CO, September 1977, 55 pp.
- UAG-63 GEOMAGNETIC DATA FOR MARCH 1976 [AE(7) INDICES AND STACKED MAGNETOGRAMS], by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Boulder, CO, September 1977, 57 pp.
- UAG-64 GEOMAGNETIC DATA FOR APRIL 1976 [AE(8) INDICES AND STACKED MAGNETOGRAMS], by Joe Haskell Allen, Carl C. Abston and Leslie D. Morris, National Geophysical and Solar-Terrestrial Data Center, Boulder, CO, February 1978, 55 pp.
- UAG-65 THE INFORMATION EXPLOSION AND ITS CONSEQUENCES FOR DATA ACQUISITION, DOCUMENTATION, PROCESSING, by G.K. Hartmann, Max-Planck-Institut fur Aeronomie, Lindau, GFR, May 1978, 36 pp.
- UAG-66 SYNOPTIC RADIO MAPS OF THE SUN AT 3.3 MM 1970-1973, by Earle B. Mayfield and Fred I. Shimabukuro, Aerospace Corp., El Segundo, CA, May 1978, 30 pp.
- UAG-67 IONOSPHERIC D-REGION PROFILE DATA BASE, A COLLECTION OF COMPUTER-ACCESSIBLE EXPERIMENTAL PRO-FILES OF THE D AND LOWER E REGIONS, by L.F. McNamara, Ionospheric Prediction Service, Sydney, Australia, August 1978, 30 pp, \$1.50 (microfiche only).
- UAG-68 A COMPARATIVE STUDY OF METHODS OF ELECTRON DENSITY PROFILE ANALYSIS, by L.F. McNamara, Ionospheric Prediction Service, Sydney, Australia, August 1978, 30 pp, \$1.50 (microfiche only).
- UAG-69 SELECTED DISTURBED D-REGION ELECTRON DENSITY PROFILES. THEIR RELATION TO THE UNDISTURBED D RE-GION, by L.F. McNamara, Ionospheric Prediction Service, Sydney, Australia, October 1978, 50 pp, \$1.50 (microfice only).
- UAG-70 ANNOTATED ATLAS OF H-ALPHA SYNOPTIC CHARTS FOR SOLAR CYCLE 20 (1964-1974) CARRINGTON SOLAR RO-TATIONS 1487-1616, by Patrick S. McIntosh, NOAA Space Environment Laboratory, Boulder, CO, February 1979, 327 pp, \$3.50.
- UAG-71 MAGNETIC POTENTIAL PLOTS OVER THE NORTHERN HEMISPHERE FOR 26-28 MARCH 1976, A.D. Richmond, NOAA Space Environment Laboratory, Boulder, CQ; H.W. Kroehl, National Geophysical and Solar-Terrestrial Data Center, Boulder, CO; M.A. Henning, Lockheed Missils and Space Co., Auror, CO; and Y. Kamide, Kyoto Sangyo University, Kyoto, Japan, April 1979, 118 pp, \$1.50.
- UAG-72 ENERGY RELEASE IN SOLAR FLARES, PROCEEDINGS OF THE WORKSHOP ON ENERGY RELEASE IN FLARES, 26 FEB-RUARY - 1 MARCH 1979, CAMBRIDGE, MASSACHUSETTS, U.S.A., edited by David M. Rust, American Science and Engineering, Inc., Cambridge, MA; and A. Gordon Emslie, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, July 1979, 68 pp, \$1.50 (microfiche only).
- UAG-73 AURORAL ELECTROJET MAGNETIC ACTIVITY INDICES AE(11-12) FOR JANUARY JUNE 1975, by Joe Haskell Allen, Carl C. Abston, J.E. Salazar and J.A. McKinnon, National Geophysical and Solar-Terrestrial Data Center, NOAA, Boulder, CO, August 1979, 114 pp, \$1.75 (microfiche only).
- UAG-74 ATS-6 RADIO BEACON ELECTRON CONTENT MEASUREMENTS AT OUTACAMUND, INDIA, OCTOBER JULY 1976, by S.D. Bouwer, K. Davies, R.F. Donnelly, R.N. Grubb, J.E. Jones and J.H. Taylor, NOAA Space Environment Laboratory, Boulder, CO; and R.G. Rastogi, M.R. Deshpande, H. Chandra and G. Sethia, Physical Research Laboratory, Ahmedabad, India, March 1980, 58 pp, \$2.50.
- UAG-75 THE ALASKA IMS MERIDIAN CHAIN: MAGNETIC VARIATIONS FOR 9 MARCH 27 APRIL 1978, by H.W. Kroehl and G.P. Kosinski, National Geophysical and Solar-Terrestrial Data Center, Boulder, CO; S.-I. Akasofu, G.J. Romick, C.E. Campbell and G.K. Corrick, University of Alaska, Fairbanks, AK; and C.E. Hornback and A.M. Gray, NOAA Space Environment Laboratory, Boulder, CO, June 1980, 107 pp, \$3.00.

- UAG-76 AURORAL ELECTROJET MAGNETIC ACTIVITY INDICES AE(12) FOR JULY DECEMBER 1975, by Joe Haskell Allen, Carl C. Abston, J.E. Salazar and J.A. McKinnon, National Geophysical and Solar-Terrestrial Data Center, NOAA, Boulder, CO, August 1980, 116 pp, \$2.50.
- UAG-77 SYNOPTIC SOLAR MAGNETIC FIELD MAPS FOR THE INTERVAL INCLUDING CARRINGTON ROTATIONS 1601-1680, MAY 5, 1973 - APRIL 26, 1979, by J. Harvey, B. Gillespie, P. Miedaner and C. Slaughter, Kitt Peak National Observatory, Tucson, AZ, August 1980, 66 pp, \$2.50.
- UAG-78 THE EQUATORIAL LATITUDE OF AURORAL ACTIVITY DURING 1972-1977, by N.R. Sheeley, Jr. and R.A. Howard, E.O. Hulbert Center for Space Research, U.S. Naval Research Laboratory, Washington, DC and B.S. Dandekar, Air Force Geophysics Laboratory, Hanscom AFB, MA, October 1980, 61 pp, \$3.00.
- UAG-79 SOLAR OBSERVATIONS DURING SKYLAB, APRIL 1973 FEBRUARY 1974, I. CORONAL X-RAY STRUCTURE, JI. SOLAR FLARE ACTIVITY, by J.M. Hanson, University of Michigan, Ann Arbor, MI; and E.C. Roelof and and R.E. Gold, The Johns Hopkins University, Laurel, MD, December 1980, 43 pp, \$2.50.
- UAG-80 EXPERIMENTAL COMPREHENSIVE SOLAR FLARE INDICES FOR 'MAJOR' AND CERTAIN LESSER FLARES, 1975-1979, compiled by Helen W. Dodson and E. Ruth Hedeman, The Johns Hopkins University, Laurel, MD, July 1981, 33 pp, \$2.00.
- UAG-81 EVOLUTIONARY CHARTS OF SOLAR ACTIVITY (CALCIUM PLAGES) AS FUNCTIONS OF HELIOGRAPHIC LONGITUDE AND TIME, 1964-1979, by E. Ruth Hedeman, Helen W. Dodson and Edmond C. Roelof, The Johns Hopkins University, Laurel, MD, August 1981, 103 pp, \$4.00.
- UAG-82 INTERNATIONAL REFERENCE IONOSPHERE IRI 79, edited by J. Virginia Lincoln and Raymond O. Conkright, National Geophysical and Solar-Terrestrial Data Center, NOAA, Boulder, CO, November 1981, 243 pp, \$4.50.
- UAG-83 SOLAR-GEOPHYSICAL ACTIVITY REPORTS FOR SEPTEMBER 7-24, 1977 AND NOVEMBER 22, 1977, Parts 1 and 2, compiled by John A. McKinnon and J. Virginia Lincoln, World Data Center A for Solar-Terrestrial Physics, NOAA, Boulder, CO, February 1982, 553 pp, \$10.00.
- UAG-84 CATALOG OF AURORAL RADIO ABSORPTION DURING 1976-1979 AT ABISKO, SWEDEN, by J.K. Hargreaves, C.M. Taylor and J.M. Penman, Environmental Sciences Department, University of Lancaster, Lancaster, UK, July 1982, 69 pp, \$3.00.
- UAG-85 CATALOG OF IONOSPHERE VERTICAL SOUNDINGS DATA, edited by Raymond O. Conkright and H. Irene Brophy, National Geophysical Data Center, NOAA, Boulder, CO, July 1982, 107 pp, \$3.50. Supersedes UAG-54.
- UAG-86 INTERNATIONAL CATALOG OF GEOMAGNETIC DATA, compiled by J.H. Allen and C.C. Abston, National Geophysical Data Center, NOAA, Boulder, CO; E.P. Kharin and N.E. Papitashvili, Academy of Sciences of the USSR, World Data Center B2, Moscow, USSR; and V.O. Papitashvili, IZMIRAN, Moscow Region, USSR, November 1982, 191 pp, \$4.00. Supersedes UAG-35 and 49.
- UAG-87 CHANGES IN THE GLOBAL ELECTRIC FIELDS AND CURRENTS FOR MARCH 17-19, 1978, FROM SIX IMS MERIDIAN CHAINS OF MAGNETOMETERS, by Y. Kamide, Kyoto Sangyo University, Kyoto, Japan; H.W. Kroehl, National Geophysical Data Center, NOAA, Boulder, CO; and A.D. Richmond, NOAA Space Environment Laboratory, Boulder, CO, November 1982, 102 pp, \$3.50.
- UAG-88 NUMERICAL MODELING OF IONOSPHERIC PARAMETERS FROM GLOBAL IMS MAGNETOMETER DATA FOR THE CDAW-6 INTERVALS, by Y. Kamide, Kyoto Sangyo University, Kyoto, Japan; H.W. Kroehl, National Geophysical Data Center, NOAA, Boulder, CO; and B.A. Hausman, National Geophysical Data Center, NOAA, Boulder, CO, November 1983, 197 pp, \$4.00.
- UAG-89 ATMOSPHERIC HANDBOOK: ATMOSPHERIC DATA TABLES AVAILABLE ON COMPUTER TAPE, by V.E. Derr, NOAA Environmental Research Laboratories, Boulder, CO, July 1984, 56 pp.
- UAG-90 EXPERIENCE WITH PROPOSED IMPROVEMENTS OF THE INTERNATIONAL REFERENCE IONOSPHERE (IRI): CONTRIB-UTED PAPERS, MAINLY FROM THE URSI-COSPAR WORKSHOP HELD IN BUDAPEST IN 1980, edited by K. Rawer, University of Freiburg, Federal Republic of Germany, and C.M. Minnis, former Secretary General of URSI, Brussels, Belgium, May 1984, 233 pp, \$6.00.

Equatorial Radius of Earth -- 6378.39 km

Polar Radius of Earth -- 6356.91 km

Radius of a Sphere Having the same Volume as Earth -- 6371.22 km

- Angular Velocity of Rotation of Earth -- 7.292E-5
- Acceleration of Gravity at Sea Level and 45 degrees latitude -- 980.616 cm $\rm s^{-2}$
- Solar Constant -- 2.00 Langley $\min^{-1} = 1.388E06$ erg cm⁻² s⁻¹

Mean Solar Distance -- 1.4968EØ8 km

Sidereal Day

-- 23.93447 hr -- 23 hr 56'4.09"

Velocity of Light -- 2.9979E08 m s⁻¹

Universal Gas Constant -- 8.3144E07 erg mole-1 K-1

Gas Constant for Dry Air -- 2.8704E06 erg g⁻¹ K⁻¹

Standard Molar Volume of Ideal Gas -- 22,413.6E-6 m³ mole⁻¹ -- 22.4136 liters mole⁻¹

Molar Constant of Ideal Gas -- 8.3143 J mole⁻¹ K⁻¹ -- 8.3143E07 ergs mole-1 K-1

Mean Molecular Weight of Dry Air -- 28,966 g mole-1

Molecular Weight of Water -- 18.016 g mole-1

Specific Heat Capacity of Dry Air at Constant Pressure -- 0.240 cal g⁻¹ K⁻¹

Specific Heat Capacity of Dry Air at Constant Volume -- 0.171 cal g⁻¹ K⁻¹

Ratio of the Specific Heats of Dry Air -- 1.400

Specific Heat Capacity for Water Vapor at Constant Pressure -- 1850 J $\rm kg^{-1}~\rm K^{-1}$

Specific Heat Capacity for Water Vapor at Constant Volume -- 1390 J kg⁻¹ K⁻¹

Heats of Transformation of Phase of Water Vaporization

-- 2.406E06 J kg⁻¹ (40°C) -- 2.501E06 J kg⁻¹ (0°C) -- 2.635E06 J kg⁻¹ (-50°C)

Heats of Transformation Of Phase of Water Fusion -- 0.334 J $\rm kg^{-1}$ (0°C)

Heats of Transformation Of Phase of Water Sublimation

-- 2.834 EØ6 J kg⁻¹ (ذC) -- 2.839 EØ6 J kg⁻¹ (-30°C)

Stefan-Boltzmann Constant -- 8,128E-11 Langley K-4 min⁻¹

Avogadro's Constant -- 6.0225E23 mole-1

Boltzmann's Constant -- 1.3805E-23 J K⁻¹

Planck's Constant -- 6.6256E-34 J s⁻¹

Joule's Constant -- 4.186E07 ergs cal-1

1 degree Latitude at 45 degrees N or S -- 111.1 km -- 59.96 nautical miles

-- 69.05 statute miles

1 m s⁻¹

1 atmosphere -- 1013.25 mb

-- 760.000 mm of mercury

-- 29.921 inches of mercury -- 1.01325E06 dynes cm⁻²

1 calorie -- 4.186E07 ergs

lelting	Point of Ice	
	Ø.ØØ°C	
	32.00°F	
	273.16 K	