
TYPICAL METEOROLOGICAL YEAR

USER'S MANUAL

TD - 9734

Hourly Solar Radiation-Surface Meteorological Observations

.

,

TYPICAL

METEOROLOGICAL YEAR

USER'S MANUAL

TD - 9734

HOURLY SOLAR RADIATION - SURFACE

METEOROLOGICAL OBSERVATIONS

National Climatic Data Center Library 151 Patton Avenue Asheville, NC 28801-5001

National Climatic Center

Asheville, North Carolina

May 1981

REPRINTED SEPT, 1982

CONTENTS

Acknowl	edgem	ents	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	٠	•	•	٠	ii
Introdu	ction	••	•	•	•	٠	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	1
Disclai	ner .	••	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
Regiona	L Map	••	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
Typical	Meteo	orol	ogi	Lca	1	Ye	ear	: ((TN	1Y)) 1	let	:wc	ork	: M	lar)	•	•	•	•	•	•	•	•	•	•	•	•	٠	5
TMY Reco	ord La	ayou	t	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
Station	List	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	15
Sample 1	[nvent	cory	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	25

Appendix

"Generation of Typical Meteorological Years for 26 SOLMET Stations" . 26

The Typical Meteorological Year (TMY) data described in this manual were produced under contract to the Department of Energy by a number of organizations. The rehabilitated solar radiation data for 26 locations and all meteorological data were supplied by the National Climatic Center, the modeled (ERSATZ) solar radiation data were developed by the Air Resources Laboratory of the National Oceanic and Atmospheric Administration, the TMY data for the 26 "rehabilitated" locations were developed by the Sandia Laboratories, and the TMY data for all other locations were produced by EG & G, Inc. of Los Alamos, New Mexico.

I particularly want to thank I. J. Hall, R. R. Prairie, H. E. Anderson and E. C. Boes of Sandia Laboratories for their development of the TMY selection procedures and processing programs. Special acknowledgement is made to Miriam Provine of EG & G for supplying the TMY tapes for 208 locations and to Devoyd Ezell of the National Climatic Center for his efforts in assembling the data into regional tapes and development of the inventory program.

> Frank T. Quinlan Chief, Climatological Analysis Division

INTRODUCTION

The requirement for weather data collections suitable for use with building energy-load computer programs has resulted in a class of data sets known as "typical," "representative," or "reference" years. The goal is to produce a full set of 8,760 hourly weather observations containing real weather sequences that represent the long-term climatic mean conditions for a particular location. Typical Meteorological Year (TMY) data have been selected from SOLMET data (Tape Deck 9724) for use with computer programs to assess solar system performance. The TMY tapes contain only global and direct solar radiation estimates and the collateral meteorological data for 234 locations in the United States; <u>it is recommended that Field 108</u> (Standard Year Corrected data) be used for best estimates of global radiation on a horizontal surface.

The Tape Deck contains nine (9) tapes with each tape containing all available TMY locations for a particular region of the United States (see Figures 1 and 2). Each logical record is 132 bytes long. The files on each tape are arranged in station number order with the data for each station in chronological sort, blocked by day in 24 logical records (3168 bytes) per physical tape record on 1600 bpi, 9 track, EBCDIC mode, odd parity tapes. Each station contains 365 blocks (see Figure 3 for record layout). NOTE: There is no tape mark between stations.

1

Users should refer to the following publications for details about the individual elements contained in these tape records and the procedures used to assemble the basic SOLMET data sets:

SOLMET: Volume 2 - Final Report (TD-9724)

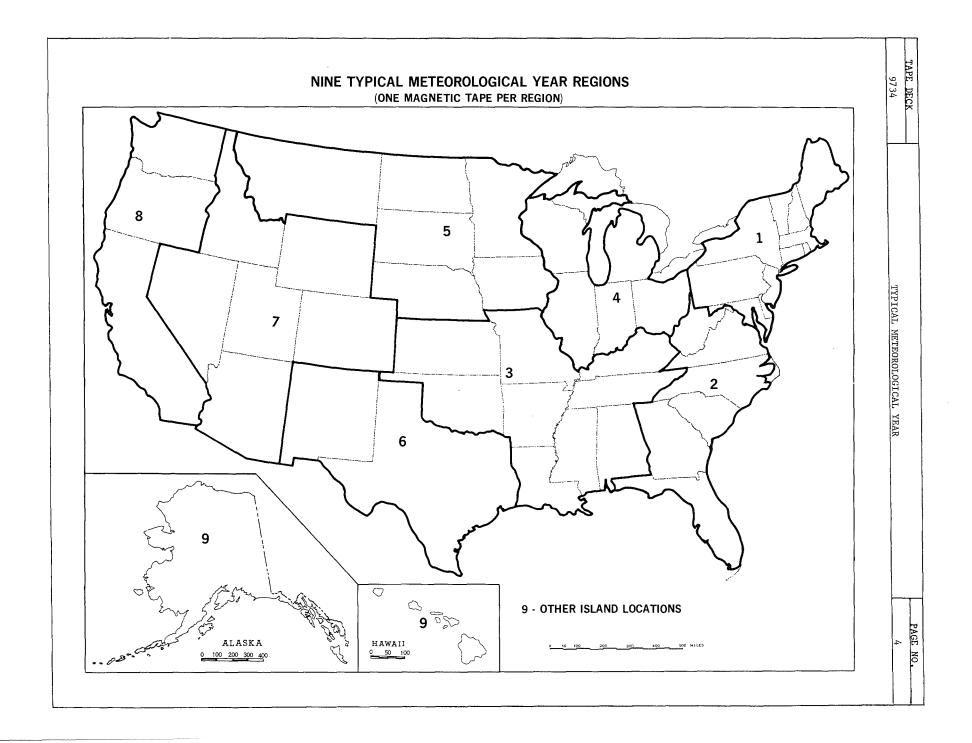
Long-term monthly averages of solar radiation, temperature, degree days and global K_T values may be obtained in the <u>INSOLATION DATA MANUAL</u> published by the Solar Energy Research Institute (SERI). This publication (SERI/SP-755-789) dated October 1980 is available through the Superintendent of Documents.

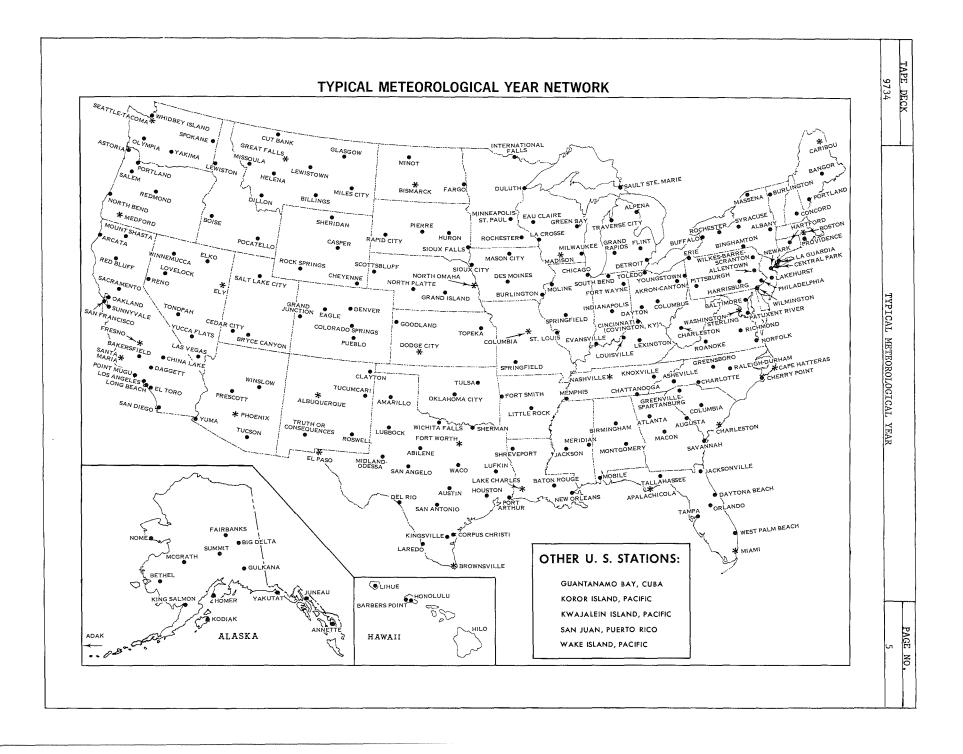
ORDERING INFORMATION

Address requests to Director, National Climatic Center, Federal Building, Asheville, NC 28801; or call our Digital Products Section at 704-258-2850, extension 203 (FTS 672-0203).

DISCLAIMER

The National Climatic Center has agreed to service requests for tape copies of Typical Meteorological Year (TMY) tapes that were derived from the "Regression Modeled Solar Radiation Stations" described in <u>SOLMET</u>: <u>Volume 1 -</u> <u>User's Manual</u>. The "Regression Modeled Solar Radiation Station" SOLMET tapes and the TMY tapes derived from them were developed by contractors to the Department of Energy and have not received an independent review for accuracy or completeness.


Therefore, NATIONAL CLIMATIC CENTER ASSUMES NO RESPONSIBILITY FOR THE ACCURACY OR COMPLETENESS OF THE ENCLOSED TAPE(S). We do, however, guarantee that the tape is readable. We anticipate that these tapes will be quality controlled by a contractor at some future date so we would appreciate any positive or negative comments from users. Please forward these comments to:


> Solar Energy Research Institute 1617 Cole Blvd. Golden, CO 80401

Attn: Tom Stoffel 642 16/3

Please identify the station by name and number, make your comments as specific as possible, and indicate the date on the tape copy.

3

TAPE DECK			PAGE NO. 6
9734		TYPICAL METEOROLOGICAL YEAR	D
	002 003 FIELD NUMBER	AR LST ETR RADIATION VALUES KJ/m2 A B E TIME KJ/m2 D D N T GLOBAL A B Y HRMN I I E I OBS ENG STD A B Y HRMN I E F T L OBS ENG STD A B Y HRMN I E F T L OBS ENG STD C V E F T COR YR I I E F T C COR YR I I E F D I <td< td=""><td></td></td<>	
TAPE FIELD NUMBE	TAPE R POSITIONS	ELEMENT	
002 003 004	001 - 005 006 - 015 016 - 019	WBAN STATION NUMBER SOLAR TIME (YR, MO, DAY, HOUR, MINUTE) LOCAL STANDARD TIME (HOUR AND MINUTE)	
101 102 103 104 105 106 107 108 109,110 111	$\begin{array}{c} 020-023\\ 024-028\\ 029-033\\ 034-038\\ 039-043\\ 044-048\\ 049-053\\ 054-058\\ 059-068\\ 069-070\\ \end{array}$	EXTRATERRESTRIAL RADIATION DIRECT RADIATION DIFFUSE RADIATION NET RADIATION GLOBAL RADIATION ON A TILTED SURFACE GLOBAL RADIATION ON A HORIZONTAL SURFACE - OBSERVED DATA GLOBAL RADIATION ON A HORIZONTAL SURFACE - ENGINEERING COI GLOBAL RADIATION ON A HORIZONTAL SURFACE - STANDARD YEAR ADDITIONAL RADIATION MEASUREMENTS MINUTES OF SUNSHINE	RRECTED DATA CORRECTED DATA
201 202 203 204 205 206 207 208 209 210 211	$\begin{array}{c} 071 & - 072 \\ 073 & - 076 \\ 077 & - 081 \\ 082 & - 085 \\ 086 & - 093 \\ 094 & - 103 \\ 104 & - 111 \\ 112 & - 118 \\ 119 & - 122 \\ 123 \\ 124 & - 132 \end{array}$	TIME OF COLLATERAL SURFACE OBSERVATION (LST) CEILING HEIGHT (DEKAMETERS) SKY CONDITION VISIBILITY (HECTOMETERS) WEATHER PRESSURE (KILOPASCALS) TEMPERATURE (DEGREES CELSIUS TO TENTHS) WIND (SPEED IN METERS PER SECOND) CLOUDS SNOW COVER INDICATOR BLANK (UNUSED)	
209 210	119 - 122 123	CLOUDS SNOW COVER INDICATOR	

IENT <u>CC</u>	02-101, elements TAPE ONFIGURATION	with a tape configuration of 9's indicate CODE DEFINITIONS
H <u>ENT</u> <u>CC</u> I STATION NUMBER 01	TAPE	
<u>ient co</u> i station number 01		CODE DEFINITIONS
I STATION NUMBER 01		CODE DEFINITIONS
I STATION NUMBER 01	ONFIGURATION	
		AND REMARKS
AR TIME	1001 - 98999	Unique number used to identify each station.
. 00	0 - 99	Year of observation, 00 - 99 = 1900 - 1999
н 01	1 – 12 1	Month of observation, 01 - 12 = Jan Dec.
01	1 - 31	Day of month
00	001 - 2400	End of the hour of observation in
	ſ	solar time (hours and <u>minutes</u>)
L STANDARD 00	000 - 2359	Local Standard Time in hours and minutes
	(corresponding to end of solar hour indi-
	(cated in field 003. For Appendix A.2
	3	listed stations, add 30 minutes to the
	1	local standard time on tape.
ATERRESTRIAL 00	000 – 4957 <i>I</i>	Amount of solar energy in kJ/m^2 received at
ATION	1	top of atmosphere during solar hour ending
	٤	at time indicated in field 003, based on
	٤	solar constant = $1377 J/(m^2 \cdot s)$. 0000 = nighti
	7	values for extraterrestrial radiation, and 80
	=	= corresponding nighttime value in Field 108.
	. I	For stations noted as "rehabilitated" in the
	٤	station list, 99999 = nighttime values define
	e	as zero kJ/m ² .
CT RADIATION	F	Portion of radiant energy in kJ/m^2 received
CODE INDICATOR 0	-9 a	at the pyrheliometer directly from the sun
00	100 – 4957 č	during solar hour ending at time indicated
	i	in field 003. 99999 = nighttime values
	đ	defined as zero kJ/m ² .
	. 00	:

TAPE DECK 9734		TYP	ICAL METEOROLOGIC	CAL YEAR	PAGE NO. 8
TAPE	TAPE		TAPE	CODE DEFINITIONS	
FIELD NUMBER	POSITIONS	ELEMENT	CONFIGURATION	AND REMARKS	
103		DIFFUSE RADIATION		Amount of radiant energy in k	J/m ² received
	029	DATA CODE INDICATOR	0 - 9	at the instrument indirectly	from reflection,
	030-033	DATA	0000 - 4957	scattering, etc., during the	solar hour ending
				at the time indicated in fiel	1 003.
				NOTE: DIFFUSE DATA NOT AVAIL	ABLE.
104	034-038	NET RADIATION		Difference between the incomin	ng and outgoing
	034	DATA CODE INDICATOR	0 - 9	radiant energy in kJ/m ² during	g the solar hour
	035-038	DATA	2000 - 8000	ending at the time indicated	in field 003. A
				constant of 5000 has been add	ed to all net
				radiation data. NOTE: <u>NET R</u>	ADIATION DATA NOT
				AVAILABLE	
105	039-04 3	GLOBAL RADIATION ON		Total of direct and diffuse ra	idiant energy
		A TILTED SURFACE		in kJ/m^2 received on a tilted	surface (tilt
	03 9	DATA CODE INDICATOR	0 - 9	angle indicated in station - j	period of
	040-043	DATA	0000 - 4957	record list) during solar hour	ending at
				the time indicated in field O	3. NOTE: DATA
				NOT AVAILABLE	
	044-058	GLOBAL RADIATION ON		Total of direct and diffuse ra	idiant energy
		A HORIZONTAL SURFACE		in kJ/m^2 received on a horizon	ital surface
				by a pyranometer during solar	hour ending at
				the time indicated in field O)3.
10 6	044-048	OBSERVED DATA			
	044	DATA CODE INDICATOR	0 - 9		
	045-048	DATA	0000 - 4957	Observed value. NOTE: THESE	DATA ARE NOT
				CORRECTED. RECOMMEND USE OF I	ATA IN FIELD 108.
107	049-053	ENGINEERING CORRECTED		NOTE: RECOMMEND USE OF DATA]	N FIELD 108.
		DATA			
	04 9	DATA CODE INDICATOR	0 - 9		
	050-053	DATA	0000 - 4957	Observed value corrected for k	nown scale
				changes, station moves, record	er and sensor
				calibration changes, etc.	

9734		ТҮР	ICAL METEOROLOGIC	CAL YEAR	PAGE NO. 9
TAPE	TAPE		TAPE	CODE DEFINITIONS	
FIELD NUMBER	POSITIONS	ELEMENT	CONFIGURATION	AND REMARKS	
10 8	054-058	STANDARD YEAR			
		CORRECTED DATA			
	054	DATA CODE INDICATOR	0 - 9		
	055-058	DATA	0000 - 4957	Observed value adjusted to St	andard Year
				Model. This model yields exp	
				sky irradiance received on a	
				surface at the elevation of t	
				NOTE: All nighttime values of	
				except stations noted as reha	
				station list; for those stati	
				values are coded 99999.	U
109, 110	059-068	ADDITIONAL		Supplemental Fields A and B f	
		RADIATION		radiation measurements; type	of measurement
		MEASUREMENTS		specified in station-period o	f record list.
	059-064	DATA CODE INDICATORS	0 - 9		
	060-063	DATA			
	065-068	DATA			
	NOTE FOR FI	IELDS 102-110: Data code	e indicators are:		
		0 Observed data			
		1 Estimated from mod	del using sunshin	e and cloud data	
		2 Estimated from mod	del using cloud d	ata	
		3 Estimated from mod	del using sunshin	e data	
		4 Estimated from mod	lel using sky con	dition data	
		5 Estimated from lin	near interpolatio	n	
		6 Reserved for futur	re use		
		7 Estimated from oth	ner model (see in	dividual station notes in SOLME	T: Volume 1.)
		8 Estimated without	use of a model		
		9 Missing data follo	ows		
		(See model description	in SOLMET: Volu	me 2.)	
111	069-070	MINUTES OF	00 - 60	For Local Standard Hour most	closely match-
		SUNSHINE		ing solar hour, NOTE: Data	
				~	-

<u>TAPE DECK</u> 9734			TYPICAL METEOROLOGIC	CAL YEAR	PAGE NO. 10
 ТАРЕ	TAPE		TAPE	CODE DEFINITIONS	
FIELD NUMBER	POSITIONS	ELEMENT	CONFIGURATION	AND REMARKS	
201	071-072	TIME OF TD 1440	00 - 23	Local Standard Hour of TD 144	0 Meteorological
201	0/1-0/2		00 25	Observation that comes closes	
		OBSERVATIONS		the solar hour for which sola	_
				are recorded.	
				are recorded.	
20 2	073-076	CEILING HEIGHT	0000 - 3000	Ceiling height in dekameters	$(dam = m \times 10^1);$
				ceiling is defined as opaque	sky cover
				of .6 or greater.	
				0000 - 3000 = 0 to 30,000 met	ers
			7777	7777 = unlimited; clear	
			8888	8888 = unknown height of cirr	oform ceiling
203	077-081	SKY CONDITION			
	077	INDICATOR	0	Identifies observations after	1 June 51.
	078-081	SKY CONDITION	0000 - 8888	Coded by layer in ascending o	rder; four
				layers are described; if less	than 4 layers
				are present the remaining pos	itions are
				coded 0. The code for each 1.	ayer is:
				0 = Clear or less than .1 c	over
				1 = Thin scattered (.15)	cover)
				2 = Opaque scattered (.1 -	.5 cover)
				3 = Thin broken (.69 co	ver)
				4 = Opaque broken (.69	cover)
				5 = Thin overcast (1.0 cove	r)
				6 = Opaque overcast (1.0 co	ver)
				7 = Obscuration	
				8 = Partial obscuration	
204	082-085	VISIBILITY	0000 - 1600	Prevailing horizontal visibil	ity in hectomete:
				$(hm = m \times 10^2).$	
				0000 - 1600 = 0 to 160 kilome	ters
			8888	8888 = unlimited	

<u>TAPE DECK</u> 9734		TY	PICAL METEOROLOGIC	AL YEAR	PAGE NO.
TAPE	TAPE		TAPE	CODE DEFINITIONS	
FIELD NUMBER	POSITIONS	ELEMENT	CONFIGURATION	AND REMARKS	
205	086-093	WEATHER			
	086	OCCURRENCE OF	0 - 4	0 = None	
		THUNDERSTORM,		1 = Thunderstorm - lightning	and thunder.
		TORNADO OR		Wind gusts less than 50 k	mots, and hail,
		SQUALL		if any, less than 3/4 inc	h diameter.
				2 = Heavy or severe thunderst	orm - frequent
				intense lightning and thu	nder. Wind
				gusts 50 knots or greater	and hail, if
				any, 3/4 inch or greater	diameter.
				3 = Report of tornado or wate	rspout.
				4 = Squall (sudden increase o	f wind speed by
				at least 16 knots, reachi	ng 22 knots or
				more and lasting for at 1	east one
				minute).	
	087	OCCURRENCE OF RAIN,	0 - 8	0 = None	
		RAIN SHOWERS OR		l = Light rain	
		FREEZING RAIN		2 = Moderate rain	
				3 = Heavy rain	
				4 = Light rain showers	
				5 = Moderate rain showers	
				6 = Heavy rain showers	
				7 = Light freezing rain	
				8 = Moderate or heavy freezin	g rain
	088	OCCURRENCE OF	0 - 6	0 = None	
		DRIZZLE, FREEZING		l = Light drizzle	
		DRIZZLE		2 = Moderate drizzle	
				3 = Heavy drizzle	
				4 = Light freezing drizzle	
				5 = Moderate freezing drizzle	
				6 = Heavy freezing drizzle	

•

<u>TAPE DECK</u> 9734		TY	PICAL METEOROLOGIC	CAL YEAR	PAGE NO. 12
TAPE	TAPE		TAPE	CODE DEFINITIONS	
IELD NUMBER	POSITION	ELEMENT	CONFIGURATION	AND REMARKS	
	08 9	OCCURRENCE OF SNOW,	0 - 8	0 = None	
		SNOW PELLETS OR		l = Light snow	
		ICE CRYSTALS		2 = Moderate snow	
				3 = Heavy snow	
				4 = Light snow pellets	
				5 = Moderate snow pellets	
				6 = Heavy snow pellets	
				7 = Light ice crystals	
				8 = Moderate ice crystals	
				Beginning April 1963 intensit	ies of ice
				crystals were discontinued.	All occurrences
				since this date are recorded	as an 8.
	090	OCCURRENCE OF SNOW	0 - 6	0 = None	
		SHOWERS OR SNOW		1 = Light snow showers	
		GRAINS		2 = Moderate snow showers	
				3 = Heavy snow showers	
				4 = Light snow grains	
				5 = Moderate snow grains	
				6 = Heavy snow grains	
				Beginning April 1963 intensit	ies of snow
				grains were discontinued. Al	1 occurrences
				since this date are recorded	as a 5.
	091	OCCURRENCE OF SLEET	0 - 8	0 = None	
		(ICE PELLETS), SLEET		1 = Light sleet or sleet show	ers (ice
		SHOWERS OR HAIL		pellets)	
				2 = Moderate sleet or sleet s	howers (ice
				pellets)	
				3 = Heavy sleet or sleet show	ers (ice
				pellets)	
				4 = Light hail	
				5 = Moderate hail	
				6 = Heavy hail	

<u>TAPE DECK</u> 9734		TYP	ICAL METEOROLOGIC	CAL YEAR	PAGE NO. 13
TAPE	TAPE		TAPE	CODE DEFINITIONS	<u> </u>
IELD NUMBER	POSITIONS	ELEMENT	CONFIGURATION	AND REMARKS	
	091 (Cont	inued)		7 = Light small hail	
				8 = Moderate or heavy small :	hail
				Prior to April 1970 ice pell	ets were coded
				as sleet. Beginning April 1	970 sleet and
				small hail were redefined as	
				and are coded as a 1, 2 or 3	in this position.
				Beginning September 1956 into	
				hail were no longer reported	and all
				occurrences were recorded as	a 5.
	0 92	OCCURRENCE OF FOG,	0 - 5	0 = None	
		BLOWING DUST OR		1 = Fog	
		BLOWING SAND		2 = Ice fog	
				3 = Ground fog	
				4 = Blowing dust	
				5 = Blowing sand	
				These values recorded only w	nen visibility
				less than 7 miles.	
	093	OCCURRENCE OF SMOKE,	0 - 6	0 = None	
		HAZE, DUST, BLOWING		1 = Smoke	
		SNOW OR BLOWING SPRAY		2 = Haze	
				3 = Smoke and haze	
				4 = Dust	
				5 = Blowing snow	
				6 = Blowing spray	
	v			These values recorded only wh	en visibility
				less than 7 miles.	
20 6	094-103	PRESSURE			
	094-098	SEA LEVEL PRESSURE	08000 - 10999	Pressure, reduced to sea leve	l, in kilo-
				pascals (kPa) and hundredths.	
	099-103	STATION PRESSURE	08000 - 10999	Pressure at station level in	kilopascals
				(kPa) and hundredths. 08000 - 10999 = 80 to 109.99	

<u>TAPE DECK</u> 9734		ጥሪወገ	ICAL METEOROLOGIC	AI. VEAR	PAGE NO.
9734 TAPE	TAPE		TAPE	CODE DEFINITIONS	<u>I 14</u>
		DI DMENIO	CONFIGURATION	AND REMARKS	
FIELD NUMBER	POSITIONS	ELEMENT	CONFIGURATION	AND REPARKS	
20 7	104-111 104-107	TEMPERATURE DRY BULB	-700 to 0600	°C and tenths	
	104-107	DEW POINT	-700 to 0600	°C and tenths	
	100-111	DEW FOINT	-700 18 0000	-700 to $0600 = -70.0$ to $+60.0^{\circ}$	<i>C</i>
				-700 10 0600 = -70.0 10 +80.0	6
20 8	112-118	WIND			
	112-114	WIND DIRECTION	000 - 360	Degrees	
	115-118	WIND SPEED	0000 - 1500	m/s and tenths; 0000 with 000	direction
				indicates calm.	
				0000 - 1500 = 0 to 150.0 m/s	
20 9	119-122	CLOUDS			
209	119-122	TOTAL SKY COVER	00 - 10	Amount of celestial dome in te	nthe covered by
	117 120	TOTAL SKI GOVER	00 10	clouds or obscuring phenomena.	
				clouds or obscuration through	
				or higher cloud layers cannot	
	121-122	TOTAL OPAQUE SKY COVER	00 - 10	or higher croad rayers cannot	
		Tourne official but ootak			
210	123	SNOW COVER	0 - 1	0 indicates no snow or trace o	f snow.
		INDICATOR		l indicates more than a trace	of snow on the
				ground.	
211	124-132	BLANK			
	· ·				
					~

	DECK		PAGE NO.
97	34	TYPICAL METEOROLOGICAL YEAR	15
111 / N	DECTON		
IMI	REGION	1 - NORTHEASTERN U. S.	
СТ			
	14740	Hartford/Bradley Intl	
DC	+02724		
	~73/34	Washington/Dulles Intl, Sterling VA	
DE			
	13781	Wilmington/Gtr Wilmington	
MA	*9/701	Boston/Logan Intl	
		boston/bogan inti	
MD			
		Baltimore/Balto-Wash Intl	
	13/21	Patuxent River/NAS	
ME			
		Bangor/Intl	
		Caribou/Muni	
	14/64	Portland/Intl Jetport	
NH			
	14745	Concord/Muni	
ŊJ	14700	Lakehurst/NAS	
		Newark/Intl	
NY	1/70-		
	14/35	Albany/County Binghamton/Broome County	
		Buffalo/Gtr Buffalo Intl	
		Massena/Richards Field	
		New York City/La Guardia	
		New York City/Central Park	
	14700	Rochester/Monroe County Syracuse/Hancock Intl	
		Sylucide, Manoock Ther	
PA			
		Allentown/A-B-E Avoca/Wilkes Barre-Scranton	
		Avoca/Wilkes Barre-Scranton Erie/Intl	
	14751	Harrisburg/Capital City	
	13739	Philadelphia/Intl	
	94823	Pittsburgh/Gtr Pittsburgh Intl	
RI			
	14765	Providence/T F Green State	
۷T	14749	Burlington/Int1	
	17192	artrubeoul ruet	
* D-	hah1144	tated Solar Radiation Data	
·· ке	SHADILI	TALEA POTAL VAUALION DALA	

97	DECK						PAGE NO.
	/34			TYPICAL METEOROLOGIC	CAL YEAR		16
173/3	PECTON	2 - SOUTHEASTER	PN II. S				
1111	I REGION	2 DOUTHINGTH					
FL							
		Apalachicola/Mu					
	12834	Daytona Beach/H	(egional				
		Jacksonville/In Miami/Intl	101				
		Orlando/Herndor	'n				
	93805	Tallahassee/Mur	ni				
		Tampa/Int1					
	12844	West Palm Beach	h/Palm Beach Int	1			
GA	1007/	1.1 · / ·· · · ·					
		Atlanta/Hartsfi Augusta/Bush Fi					
	03813	Macon/Lewis B.	Wilson				
	03822	Savannah/Muni					
				•			
NC							
		Asheville/Muni					
	*93/29	Cape Hatteras	lan Yunt				
	13881	Charlotte/Doug1 Cherry Point/MC	las muni				
		Greensboro/Regi					
	13722	Raleigh/Raleigh	n-Durham				
	_						
SC							
		Charleston/Intl	L				
	13883	Columbia/Metro Greer/Greenvill	o-Snartanhura				
	03670	Greer/Greenvill	e-spartanburg				
VA							
		Norfolk/Intl				-	
	13740	Richmond/R E By	rd Intl				
	13741	Roanoke/Muni-Wo	odrum				
1.117							
wv	13866	Charleston/Kana	wha				
			ation Data				
* R	ehabilit	ated Solar Radi					
* R	ehabilit	ated Solar Radi					
* R	ehabilit	ated Solar Kadl					
* R	ehabilit	ated Solar Kadi					
* R	ehabilit	ated Solar Kadı					
* R	ehabilit	ated Solar Kadı					
* R	ehabilit	ared Solar Kadı					
* R	ehabilit	ared Solar Kadı					
* R	ehabilit	ared Solar Kadı					
* R	ehabilit	ared Solar Kadı					
* R	ehabilit						
* R	ehabilit		¥				
* R	ehabilit		¥				
* R	ehabilit		¥				
* R			¥				
* R	ehabilit		y				
* R			¢				
* R			,				
* R			۶.				
* R			¢				
* R			,				
* R			,				
* R			,				
* R			,				

	DECK	_	PAGE NO.
973		TYPICAL METEOROLOGICAL YEAR	17
TMY	REGION	3 - LOWER MISSISSIPPI VALLEY	
AL			
	13876	Birmingham/Muni	
	13894	Mobile/Bates Field	
	13895	fontgomery/Dannelley Field	
AR			
AL	13964	Fort Smith/Muni	
	13963	Little Rock/Adams Field	
KS			
	*13985	Dodge City/Muni Goodland/Muni-Renner Field	
		Goodana/Muni-Keiner Fleid	
	13770		
К Y			
	93820	Lexington/Blue Grass	
	93821	Louisville/Standiford Field	
LA			
	13970	Baton Rouge/Ryan	
	*03937	Lake Charles/Muni	
		New Orleans/Intl-Moisant	
	13957	Shreveport/Regional	
200			
MS	03940	Jackson/Allen C. Thompson Field	
	13865	Meridian/Key Field	
MO			
	*03945	Columbia/Regional Springfield/Regional	
	13995	St Louis/Lambert Intl	
	13774		
0K.			
		Oklahoma City/Will Rogers World	
	13968	Tulsa/Intl	
TN			
	13882	Chattanooga/Lovell Field	
	13891	Knoxville/McGhee Tyson	
	13893	Memphis/Intl	
	*13897	Nashville/Metro	
4 D	1 .1 . 1	the 1 Colon Dediction Data	
^ ке	map111	ated Solar Radiation Data	

0701		PAGE NO.
9734	TYPICAL METEOROLOGICAL YEAR	18
TMY REGION	4 - GREAT LAKES AREA	
IL		
14819	Chicago/Midway	
14923	Moline/Quad City	
93822	Springfield/Capital	
IN 02017	Provide the American Provide t	
93817	Evansville/Dress Regional Fort Wayne/Baer Muni	
93819	Indianapolis/Weir Cook Intl	
14848	South Bend/Michiana Regional	
MI		
94849	Alpena/Phelps Collins	
14822	Detroit/City	
14826	Flint/Bishop Grand Rapids/Kent County Intl	
94600	Sault Ste Marie/County Intl	
14850	Traverse City/Cherry Capital	
14000	reative oregionery capitar	
ОН		
14895	Akron/Akron-Canton	
93814	Cincinnati/Gtr Cincinnati, Covington KY	
14821	Columbus/Port Columbus Intl	
93815	Dayton/James M. Cox	
94830	Toledo/Express Youngstown/Muni	
14032	toungs cowing multi	
WI		
	Eau Claire/Muni	
14898	Green Bay/Austin Straubel	
	La Crosse/Muni	
	Madison/Truax Field	
14839	Milwaukee/Gen Mitchell	
* Rohahilit	tated Solar Radiation Data	
* Rehabilit	tated Solar Radiation Data	
* Rehabilit	tated Solar Radiation Data	
* Rehabilit	tated Solar Radiation Data	
* Rehabilit	tated Solar Radiation Data	
* Rehabilit	tated Solar Radiation Data	
* Rehabilit	tated Solar Radiation Data	
* Rehabilit	tated Solar Radiation Data	
* Rehabilit	tated Solar Radiation Data	
* Rehabilit	tated Solar Radiation Data	
* Rehabilit		

APE DECK		PAGE NO.
9734	TYPICAL METEOROLOGICAL YEAR	19
	N 5 - UPPER MISSISSIPPI VALLEY/GREAT PLAINS	
IMI ALGIO	N J - UTEK MISSISSITI VALLEJOKERI IDAIKO	
IA		
**1493	l Burlington/Muni	
	3 Des Moines/Muni	
	0 Mason City/Muni	
1494	3 Sioux City/Muni	
MN		
	3 Duluth/Intl	
	8 International Falls/Falls Intl	
	2 Minneapolis-St Paul/Intl	
	5 Rochester/Muni	
MT	• - · · · · · · · · · ·	
	3 Billings/Logan	
	7 Cut Bank/Muni	
	8 Dillon/FAA 8 Glasgow/Intl	
*2416	3 Great Falls/Intl	
	4 Helena/Helena	
	6 Lewistown/Muni	
2403	7 Miles City/Muni	
2415	3 Missoula/Johnson-Bell	
NE		
	5 Grand Island/Air Park	
*9491	8 Omaha/North Omaha Arpt 3 North Platte/Lee Byrd	
	8 Scottsbluff/County	
2402	, beotesbidil, bounty	
ND		
	l Bismarck/Muni	
	4 Fargo/Hector	
2401	3 Minot/Intl	
CD		
SD 1/03	6 Huron/W W Howes Muni	
	5 Pierre/Muni	
2409) Rapid City/Regional	
1494	Sioux Falls/Foss	
* Rehabil	itated Solar Radiation Data	
** Do not	use station and sea level pressure fields.	
1		

9734		······································	TYPICAL METEOROLOGICAL YEAR	20
TMY REGIO	N 6 -	TEXAS AND NEW MEXICO		
NM				
*2305) Alb	uquerque/Intl		
2305	l Cla	yton/Muni		
2304	3 Ros	well/Muni		
9304	5 Tru	th or Consequences/Muni		
2304	8 Tuc	umcari/Muni		
TX		1 here		
		lene/Muni rillo/Air Terminal		
		tin/Muni		
		wnsville/Intl		
1292	4 Cor	pus Christi/Intl		
2201	D Del	Rio/Int1		
		Paso/Intl		
*0392	7 For	t Worth/Stephenville		
*1296) Hou	ston/Intercontinental		
1292	8 Kin	gsville/NAS		
1290	7 Lar	edo/Laredo AFB		
2304	2 Lub	bock/Regional		
9398	7 Luf	kin/Angelina County		
2302	3 Mid	land-Odessa/Regional		
1291	7 Por	t Arthur/Jefferson County		
		Angelo/Mathis		
		Antonio/Intl rman/Perrin		
		o/Madison Cooper		
		hita Falls/Muni		
1570	0 1110	nica railo, nanz		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	litate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	litate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		
* Rehabil	itate	d Solar Radiation Data		

APE DEC	<u>CK</u>	PAGE NO.
9734	TYPICAL METEOROLOGICAL YEAR	21
TMV DT	EGION 7 - ROCKIES and DESERT SOUTHWEST	
IFII KE	GION / - ROCKIES AND DESERT SOUTHWEST	
AZ		
*2	23183 Phoenix/Sky Harbor Intl	
	23184 Prescott/Muni	
2.	23160 Tucson/Intl 23194 Winslow/Muni	
	23195 Yuma/MCAS-Yuma Intl	
2		
C O		
9:	93037 Colorado Springs/Muni	
2	23062 Denver/Stapleton Intl	
2	23063 Eagle/Eagle County 23066 Grand Junction/Walker	
9	93058 Pueblo/Memorial	
ID		
	24131 Boise/Boise Air Terminal 24149 Lewiston/Nez Perce County	
	24149 Lewiston/Nez Ferce County 24156 Pocatello/Muni	
2		
NV		
	24121 E1ko/Muni	
^Z. 2'	23154 Ely/Yelland Field 23169 Las Vegas/McCarran Intl	
	24172 Lovelock/Derby	
23	23185 Reno/Intl	
2	23153 Tonopah/Tonopah	
24	24128 Winnemucca/Muni	
0:	03133 Yucca Flats/Test Site	
UT		
23	23159 Bryce Canton/Bryce Canton	
93	03129 Cedar City/Muni	
24	24127 Salt Lake City/Intl	
WY		
24	24089 Casper/Natrona County Int1	
24	24018 Cheyenne/Muni	
24	4027 Rock Springs/Muni	
24	24029 Sheridan/Sheridan County	
* Rehal	bilitated Solar Radiation Data	

9734		PAGE NO.
	TYPICAL METEOROLOGICAL YEAR	22
TMY REGION	8 - WEST COAST STATES	
CA		
	Arcata/FAA	
	Bakersfield/Kern County	
	China Lake/NAF	
	Daggett/San Bernardino County	
93101	El Toro/MCAS	
*93193	Fresno/Air Terminal	
23129	Long Beach/Long Beach	
23174	Los Angeles/Int1	
	Mount Shasta/City Office	
	Oakland/Intl	
93111	Point Mugu/Pacific Missile Range	
	Red Bluff/Muni	
	Sacramento/Executive	
23188	San Diego/Lindbergh	
	San Francisco/Intl	
	Santa Maria/Public	
23244	Sunnyvale/Moffett NAS	
OR		
	Astoria/Clatsop County	
ンサムズサ ★りんりりに	Medford/Jackson County	
24223	North Bend/Muni	
	Portland/Int1	
	Redmon/Roberts	
	Salem/McNary	
WA		
24227	Olympia/Olympia	
	Seattle-Tacoma/Intl	
24157	Spokane/Intl	
	Whidbey Island/NAS	
24243	Yakima/Muni	
* Rohahili	ated Solar Radiation Data	
- nenaDIII		
Renaulti		
. venabili		
. KenaDiil		
- KenaDIII		
- KenaDIII		
- KEHADIII		
- KenaDIII		
- KenaDIII		
- KenaDIII		
- Kenadili		
. Kenabili		
. Kenabili		
. Kenabili		
. Kenabili		
. Actadulu		

APE DECK		PAGE NO.
9734	TYPICAL METEOROLOGICAL YEAR	23
TMY REGIO	N 9 - ALASKA and ISLANDS	
AK 2570	4 Adak/Naval Station	
	8 Annette/FAA	
	5 Bethel/Muni	
	5 Big Delta/Big Delta	
2041	1 Fairbanks/Intl	
2041	5 Gulkana/Intermediate	
	7 Homer/Muni	
	9 Juneau/Muni	
2550	3 King Salmon/King Salmon	
2550	1 Kodiak/USCG Base	
	0 McGrath/McGrath	
	7 Nome/Muni	
	4 Summit/Summit	
2533	9 Yakutat/State	
HI		
2251	4 Barbers Point/NAS	
	4 Hilo/Gen Lyman	
	1 Honolulu/Intl	
2253	6 Lihue/Lihue	
CU		
	6 Guantanamo Bay	
	o odantanamo -u,	
PN		
4030	9 Koror Island	
	4 Kwajalein Island	
4160	6 Wake Island	
PR 116/	1 San Juan/Isla Verde	
1104	1 San Suan/181a Verue	

APE DECK		PAGE NO.
9734	TYPICAL METEOROLOGICAL YEAR	24
SOLMET STAT	IONS FOR WHICH TMY DATA WERE NOT PROCESSED	
AK		
27502	Barrow/W Rogers-W Post	
26533	Bettles/Bettles Field	
26616	Kotzebue/Ralph Wien	
CA		
23179	Needles/FAA	
KS		
03928	Wichita/Mid-Continent	
MI		
	Houghton/FAA	
MO 03947	Kansas City/Intl	
05947		
NM	- · · · · · · · · · · · · · · · · · · ·	
23090	Farmington/Muni Zuni/Intermediate	
55044	Sunt/ Intermediate	
ОН		
14820	Cleveland/Hopkins Intl	
OR.		
24134	Burns/City Office	
24155	Pendleton/Muni	
TX		
13960	Dallas/Love Field	
wv		
03860	luntington/Tri State	

	HOURLY TMY OBSERVATIONS				IONS	WBAN STATION NR: 03812							
	LST	DRY	WET		RADIATI	ION FIELDS			TOTAL	SNOW	WIND	STATION	ž
	TIME	BULB	BULB	ETR	GLOBAL	DIRECT		SUNSHINE		COVER	SPEED	PRESSURE	
AN	00744	00744	00744	00744	00744	00326			00744		00744	00744	
MAX	02314	00200	00133	03037	02120	03183			00010		00154	09538	
MIN	00004	-0078	-0128	00000	00000	00000			00000		00000	09253	
EB	00672	00672	00672	09672	00672	00336			00224		00672	00672	
MAX	02314	00167	00133	03622	02583	03231			00010		00144	0951 7	
MIN	00013	-0117	-0172	00000	00000	00000			00000		00000	09273	
1AR	00744	00744	00744	00744	00744	00390			00248		00744	00744	
MAX	02313	00211	00161	04189	03145	03234			00010		00129	09497	1
MIN	00004	-0078	-0122	00000	00000	00000			00000		00000	09182	
APR	00720	00720	00720	00720	00720	00420			00240		00720	00720	
MAX	02359	00283	00172	04525	03395	03191			00010		00118	09490	
MIN	00000	-0011	-0056	00000	00000	00000			00000		00000	09287	
MAY	00744	00744	00744	00744	00744	00452			00744		00744	00744	
MAX	02358	00317	00228	04646	03448	03008			00010		00103	09565	
MIN	00056	00022	-0033	00000	00000	00000			00000		00000	09358	
JUN	00720	00720	00720	00720	00720	00480			00240		00720	00720	
MAX	02359	00339	00217	04656	03475	03007			00010		00118	09490	
MIN	00000	00094	00061	00000	00000	00000			00000		00000	09341	
JUL	00744	00744	00744	00744	00744	00474			00744		00744	00744	
MAX	02307	00317	00244	04644	03317	03010			00010		00077	09514	
MIN	00004	00111	00100	08000	00000	00000			00000		00000	09372	
AUG	00744	00744	00744	00744	00744	00434			00248		00744	00744	
MAX	02306	00300	00222	04553	03168	02949			00010		00077	09494	
MIN	00000	00128	00128	00000	00000	00000			00000		00000	09368	
SEP	00720	00720	00720	00720	00720	00402			00240		00720	00720	
MAX	02359	00322	00206	04294	03116	03047			00010		00103	09527	ļ
MIN	00000	00067	00056	00000	00000	00000			00000		00000	09284	
ост	00744	08744	00744	00744	00744	00372			00248		00744	00744	
MAX	02359	00283	00200	03821	02741	03114			00010		00103	09571	
MIN	00044	-0033	- 8050	00000	00000	00000			00000		00000	09341	
NOV	00720	00720	00720	00720	00720	00338			00240		00720	00720	
MAX	0234.9	00217	00159	03206	02227	03147			00010		90134	09504	
MIN	00044	-0128	-0161	00000	00000	00000			00000		00000	09304	ſ
DEC	00744	00744	00744	00744	00744	00310			00744		00744	00744	
MAX	02359	00183	00150	02714	01856	03081			00010		00165	00144	
MIN	00000	-0128	-0200	00000	00000	00002			00000		00000	09280	
ANNUAL	08760	08760	08760	08760	08760	04734	00000	00000	04904	00000	08760	08760	

APPENDIX

GENERATION

 \mathbf{OF}

TYPICAL METEOROLOGICAL YEARS

FOR

26 SOLMET STATIONS

The information in this appendix is reprinted from SAND 78-1601 with permission from the Sandia National Laboratories, Albuquerque, New Mexico 87185.

26

GENERATION OF TYPICAL METEOROLOGICAL YEARS FOR 26 SOLMET STATIONS

I. J. HALL R. R. PRAIRIE H. E. ANDERSON E. C. BOES

SANDIA LABORATORIES ALBUQUERQUE, NEW MEXICO

ABSTRACT

Typical meteorological years (TMY) are defined, and a methodology for their selection for given geographical locations for which long term weather data bases exist is described. The TMYs thus selected are given, and magnetic tapes containing the TMY data bases have been created.

TABLE OF CONTENTS

- I Introduction
- II Data Base
- III Initial Approach
- IV Empirical Approach
- V Results
- VI Validation
- References
 - Appendix A

TABLES

- I SOLMET Weather Stations and Period of Record
- II SOLMET Data Format
- III Typical Meteorological Years for Each of the SOLMET Stations
- IV TRNSYS Results for TMY and 23 Year Data Base
- A-I Daily Long Term Statistics Albuquerque
- A-II Yearly Statistics for January Albuquerque
- A-III Solar Radiation Persistence for January - Albuquerque

FIGURES

- 1 Solar Radiation Data Rehabilitation Stations
- 2 Cumulative Distribution Functions for Mean Daily Wind Velocity
- 3 Solar Heating System Schematic
- A-1 Empirical CDF for January Albuquerque

MICROFICHE

Set l	Albuquerque, NM	Station	23050
Set 2	Apalachicola, FL	Station	12832
Set 3	Bismarck, ND	Station	24011
Set 4	Boston, MA	Station	94701
Set 5	Brownsville, TX	Station	12919
Set 6	Cape Hatteras, NC	Station	93729
Set 7	Caribou, ME	Station	14607
Set 8	Charleston, SC	Station	13880
Set 9	Columbia, MO	Station	03945
Set 10	Dodge City, KS	Station	13985
Set ll	El Paso, TX	Station	23044
Set 12	Ely, NV	Station	23154

Set 14 Set 15 Set 16 Set 17 Set 18 Set 19 Set 20	Fort Worth, TX Fresno, CA Great Falls, MT Lake Charles, LA Madison, WI Medford, OR Miami, FL Nashville, TN New York, NY	Station Station Station Station Station Station Station Station	93193 24143 03937 14837 24225 12839 13897
Set 22 Set 23	New York, NY Omaha, NE Phoenix, AZ Santa Maria, CA	Station Station Station Station	94918 23183
Set 25	Santa Maria, CA Seattle, WA Washington, D.C.	Station Station Station	24233

•

GENERATION OF TYPICAL METEOROLOGICAL YEARS FOR 26 SOLMET STATIONS

I. INTRODUCTION

Problems with which designers of solar systems are faced include determining the efficiency of a system and evaluating the performance of different system designs. To address such problems designers usually use computer codes which simulate or predict the energy output of the actual hardware. Such codes require meteorological inputs. At present there is no agreed upon meteorological data base to be used for inputs. The predicted performance of a system will, of course, depend on the meteorological inputs. A system which performs well for one set of inputs may perform poorly for another set.

The value of a standard data base which is representative of a given area is quite apparent. For example, it would help engineers design and evaluate energy systems and would aid them in making comparisons between different systems. To be most useful to system designers, this data base should possess several characteristics. It should consist of hourly solar radiation and weather readings for a network of representative sites across the U.S. It should in some sense be "typical" of the long term data base and it should be of a year's duration. For a given site this data base could be reasonably called a "typical meteorological year" (TMY).

Defining the characteristics of a meteorological year which make it "typical" is difficult; however, sensible properties of a TMY would seem to include the following:

- (a) The meteorological measures of the TMY, i.e., temperature, solar radiation, and wind, should have frequency distributions which are "close" to the long term distributions.
- (b) The sequences of the daily measures for the TMY should in some sense be "like" the sequences often registered at a given location.
- (c) The relationships among the different measures for the TMY should be "like" the relationships observed in nature.

This document describes a procedure for obtaining a TMY of hourly data with properties (a)-(c) and presents the results of using the procedure for 26 U.S. sites.

Other efforts have been devoted to developing common weather bases. A brief history of some of the efforts is given in reference [4]. One of the procedures described in reference [4] was developed in a joint effort by members of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers, the National Bureau of Standards, the National Oceanic and Atmospheric Administration, and the Federal Energy Administration. The principle of that procedure is to eliminate years in the period of record containing months with extremely high or low mean temperatures until only one year remains. The period of record for 60 U.S. stations was about 27 years. In another effort, described in reference [1], typical years are computer generated via mathematical models.

The method described and used in this report for generating TMY's is referred to as the empirical approach. Briefly, the empirical approach adopted for selecting TMYs for a given station is as follows: a typical month for each of the twelve calendar months from the long term data base (23 years for most stations) was chosen and then these twelve months were catenated to form TMYs. The data set generated to form the basis for the selection of a typical month consisted of the thirteen daily indices calculated from the hourly values of dry bulb temperature, dew point temperature, wind velocity, and solar radiation. Monthly statistics were calculated for each index. Month/year combinations which had statistics that were "close" to the long term statistics were candidates for typical months. Final selection of a typical month included consideration of persistence of weather patterns.

It should be emphasized that the selection methodology described herein is not limited to the 26 SOLMET sites, but is applicable to any geographic location for which a long term weather data base exists.

II. DATA BASE

The long term data base used was that for the 26 SOLMET sites maintained by the National Climatic Center (NCC) in Asheville, NC. (See Figure 1 for the location of the sites. Table I lists the stations, station numbers, and periods of record.) The NCC has "rehabilitated" the meteorological data and stored the data using the SOLMET format on magnetic tapes. The tapes were rehabilitated in two ways. The existing global horizontal solar radiation data were corrected by applying a Standard Year Clear Solar Noon Model. See reference [6]. Also, gaps in the hourly solar radiation data tapes were filled by using the Total-Horizontal Solar Radiation Model. See reference [6]. The SOLMET format and the information recorded on the SOLMET tapes are described in the SOLMET manual.* Table II, seven pages from the SOLMET manual, lists the weather variables and describes the format of the SOLMET tapes. In addition, Aerospace Corporation has augmented the tapes by adding direct insolation estimates. See reference [5].

The four meteorological measures that were used in the selection of the TMY were:

- 1. Dry bulb temperature
- 2. Dew point temperature
- 3. Wind velocity
- 4. Global solar radiation on a horizontal surface standard year corrected.

III. INITIAL APPROACH

The initial phase of the project consisted of searching the meteorological literature and contacting meteorological experts for ideas and comments on the generation of TMYs. From this it was learned that considerable effort has been expended in constructing mathematical weather models. The derivation of mathematical models commonly involves using time series techniques to fit the data with stochastic models. Extensive efforts were made to fit a part of the data from one of the SOLMET tapes with stochastic models. It was found for example, that the dry bulb temperature data could be fit quite well with the following model:

$$x_{t} = \alpha + \sum_{j=1}^{4} (a_{j} \cos w_{j}t + b_{j} \sin w_{j}t) + B_{1} X_{t-1} + B_{2} X_{t-2} + B_{3} X_{t-3} + B_{4} X_{t-23} + B_{5} X_{t-24} + B_{6} X_{t-25} + \varepsilon_{t} for w_{j} = \frac{2\pi}{24}, \frac{2\pi}{12}, \frac{2\pi}{6}, \frac{2\pi}{3}$$

*SOLMET Volume 1 - User's Manual Hourly Solar Radiation - Surface Meteorological Observations U. S. Department of Commerce National Oceanic and Atmospheric Administration Environmental Data Service National Climatic Center Asheville, NC where x_{t-i} is the dry bulb temperature at hour t-i (i=0,1, 2,3...)

 α , a's, b's, and B's are constants to be determined

 ε_+ is a random error term at hour t.

Once the data on a meteorological measure are fitted with a stochastic model one can generate data for this measure using computer simulation. A question which arises from using this procedure for generating TMYs is how one can decide that a given set of generated data is "typical."

Although the data for each of the meteorological measures perhaps could be individually fitted with a stochastic model, the models would in a sense still not be realistic because they would not account for the interrelationship among the variables. Weather data are actually a multivariate stochastic process with complex interrelationships among the variables. Fitting multivariate stochastic processes with mathematical models is somewhat difficult. Also, even if such models could be derived and a computer simulation performed to generate meteorological data, one would still be faced with the problem of deciding about the typicalness of a set of generated data.

These problems plus time constraints (both chronological and computational) suggested that a more empirical approach for obtaining TMYs might be better. The approach adopted is discussed in Section IV.

IV. EMPIRICAL APPROACH

1. Method of Generating Typical Years

It was decided to construct typical years for each site by first dividing the year into calendar months. Typical meteorological months (TMMs) were chosen by statistical methods from the period of record (23 years in most cases see Table I) and the twelve TMMs were catenated to form a TMY. Some of the variables were smoothed between adjacent months to avoid abrupt changes from the last hour of one month to the first hour of the next. Thus the typical year for each station consists of 12 months of actual meteorological data which are selected from the long term data base for that station. A TMY at a given station could, for example, consist of January 1955, February 1966, March 1962, December 1973.

2. Meteorological Measures Involved for Selecting TMY

As mentioned above, the meteorological measures involved in the selection are dry bulb temperature, dew point temperature, wind velocity, and global solar radiation. From these four measures, thirteen daily indices were generated. These indices are daily total global solar radiation, and daily maximum, mean, minimum and range for each of dry bulb temperature, dew point temperature, and wind velocity. For example, for the month of May there are 31 numerical values for each index for each year at a given station. For stations with 23 years of data there are a total of 23 x 31 = 713 values for each index for the long term May composite.

For each individual month of each year there is a distribution associated with each of the daily indices - for example, the distribution of daily maximums of dry bulb temperatures for May of 1961. In addition, for each month there is a long term distribution associated with each of the daily indices - for example, the distribution of daily maximums of dry bulb temperatures for all days in May in the entire data base. Ideally, one would pick for a TMM a particular month whose individual distributions for all of the 13 daily indices are close to the 13 corresponding long term indices. Usually it will be impossible to find such a combination. For different applications of a TMY the indices will take on different levels of importance. Thus, one would attempt to pick as candidates for the TMM the month/year combinations in which the distributions of the important indices are close, and be less concerned with matching distributions of less important indices. Further discussion regarding the importance assigned to the various indices is given in the next section.

3. Selection Procedure

The procedure for selecting a TMM consisted of two steps. The first step was to select five candidate years. The second step was to select the TMM from the five candidate years.

In the succeeding discussion the term "year" refers to a month/year combination. That is, if May is the month under consideration, 1966 refers to May, 1966.

a. Selection of five candidate years

For each of the twelve calendar months the procedure involved selecting the five years that were "closest" to the composite of all 23 years. This was done by comparing the cumulative distribution function (CDF) for each year with the CDF for the long term composite of all 23 years for each of the 13 indices. (The CDF gives the proportion of values which are less than or equal to a specified value of an index.) Many statistics are available for comparing CDFs. Reference [3] lists six of them and gives some of the properties of the statistics. The statistic selected to measure the closeness of each year's CDF to the long term composite for a given index was the Finkelstein-Schafer (FS) statistic. See reference [2]. The CDF for the variable X is estimated by $S_n(x)$ where

 $S_{n}(x) = \begin{cases} 0 \text{ for } x < x_{(1)} \\ (k - .5)/n \text{ for } x_{(k)} \leq x \leq x_{(k+1)} \\ 1 \text{ for } x > x_{(n)} \end{cases}$

Where $x_{(k)}$ is the kth ordered (from smallest to largest) observation and n is the number of observations on the variable x, (if the month is May, n = 31). S_n(x) is a monotonically increasing step function which is bounded by zero and one. The steps are of size 1/n and occur at the values of $x_{(k)}$. See Figure 2 for a plot of typical CDFs for mean daily Wind velocity. The station is Albuquerque and the month is May. The long term CDF is based on 23 years of data - 713 daily observations. The CDFs labeled 1958 and 1953 are each based on 31 daily observations. The FS statistic for comparing the long term CDF and the month/year CDF for the variable x is given by

$$FS = \frac{1}{n} \sum_{i=1}^{n} \delta_{i}$$

Where:

 δ_{i} = the absolute difference between the long term CDF and the month/year CDF at $x_{(i)}$ (i = 1, ..., n).

n = the number of daily readings in the month.

The closer the two CDFs the smaller the value of FS.

It is noted in passing that some solar practitioners have attempted to pick representative months by matching the mean and standard deviation of a month/year combination to the long term mean and standard deviation. It is felt that using the CDF and a statistic such as FS is a better selection procedure because the first two moments of two distributions can be close and yet the distributions can be quite different. A statistic such as FS is more sensitive to differences.

For each year, thirteen FS statistics were computed, one for each index. As mentioned above, the matching of certain distributions of some indices is more important than matching those of other indices. How to order groups (the years) of thirteen FS statistics in which some statistics are more important than others is an open question. One way to perform the ordering is with a weighted sum of the thirteen FS statistics,

ws =
$$\sum w_i$$
 fs

where the FS values associated with important statistics would receive relatively larger weights than the less important statistics. Choosing these weights (w.) is not clear cut but would depend on the ultimate application of the generated typical year.

In the generation of these TMY's, it was determined that the three range statistics and the minimum of wind velocity were of little or no value in the selection process, so these statistics were omitted, i.e., assigned zero weight. The maxima and minima of dry bulb and dew point temperatures were assigned the minimum non-zero weight, the means of those statistics and the mean and maximum of wind velocity a weight twice that minimum, and daily total global solar radiation was assigned the maximum weight. The actual weighting scheme used for the TMY's follows:

	Temperature					W	ind	Solar	
	Dry Bulb		Dew Point		Velocity		Radiation		
	Max	Min	Mean	Max	Min	Mean	Max	Mean	
W _i :	1/24	1/24	2/24	1/24	1/24	2/24	2/24	2/24	12/24

A value for WS was computed for each year and the five years with the smallest values for WS were selected as candidate years for the month in question.

b. Final Selection of TMM

The final selection of the TMM from the five candidate years involved examining statistics and persistence structure associated with mean daily dry bulb temperature

and daily total global solar radiation. The statistics examined were the FS statistic and the deviations of the monthly mean and median from the long term mean and median. Persistence was characterized by frequency and run length (RL) above and below fixed long term percentiles. For mean daily dry bulb temperature the frequency and run length above the 67th (consecutive warm days) and below the 33rd (consecutive cool days) long term percentile were computed. For solar radiation the frequency and run length below the 33rd long term percentile (consecutive days with low radiation) were computed. Table A-III in Appendix A is an example of the runs information calculated for daily total global solar radiation. Persistence was considered important because it was thought that in some cases a given year's CDF could be quite close to that for the long term composite yet there still could be atypically long runs of cloudy or warm or cool days. An unusual run structure is of particular importance with regard to solar energy systems.

The final selection of a TMM was somewhat subjective. However, an attempt was made to select years with small WS values, small deviations, and "typical" run structures.

The summary statistics calculated for each month/year combination are included with this report on microfiche. Appendix A describes the computer output that was generated and gives some examples of output.

Typical wind years (TWY) were also characterized. Maximum and mean daily wind velocity were the only indices used in the selection of the TWY. The selection of the five candidate years for the TWY was similar to that used for the TMY. These may be found in Appendix Table A-I. It should be noted that no adjustments were made in the wind velocity data due to changes in anemometer heights during the period of record. If appropriate adjustments were made to compensate for anemometer height changes, different TWYs would probably have been chosen.

V. RESULTS

The methodology previously described was applied to the 26 SOLMET sites. Table III lists the TMY for each station. The meteorological data corresponding to each TMY for each station have been recorded on magnetic tape and are available

from the National Climatic Center at Asheville. The tape is FORTRAN formatted into 132 character BCD records. (Tapes are also available in blocked format.) Each record represents one hourly SOLMET recording of solar and meteorological data for that station, and the entire file represents the typical year for that station. There are $365 \times 24 = 8760$ formatted physical records in the file. (If a leap year February were chosen it was truncated to 28 days.) The data in these records are exactly as described in Volume 1 - SOLMET User's Manual, with two exceptions: field number 1, the tape deck number is omitted; and in field number 209, clouds, only total sky cover and total opaque sky cover are included. In addition, for meteorological data recorded after 1964 when recordings were made on a three-hourly basis, missing data have been filled in by linear interpolation for the following fields:

Number 206 - Pressure (sea level/station)
Number 207 - Temperature (dry bulb/dew point)
Number 208 - Wind (direction/speed)

Since the TMY is created by catenating typical months, discontinuities between the end of one month and the beginning of the next were ameliorated by cubic spline smoothing for pressure, temperature, and wind velocity.

VI. VALIDATION

No extensive validation has been performed to assess the typicality of the years generated by the procedure described in this report. However, P. J. Hughes, formerly at the University of Wisconsin Solar Energy Laboratory, has assessed the TMY for Madison, Wisconsin by simulating (using TRNSYS*) the solar heating system shown in Figure 3 over the period 1953-1974. In Table IV the TRNSYS output is given for each of the 22 years and for the TMY. The mean and standard deviation of the 22 year data base is given for each column. Note that the results for the TMY are all within one standard deviation of the data base mean, a result which is supportive of the TMY.

Further validation of the TMY's is presently being conducted by Science Applications, Inc., McLean, VA.

*TRaNsient SYstem Simulation - See Reference [7].

•

SOLMET WEATHER STATIONS AND PERIODS OF RECORD AVAILABLE

Station	Station Number	First Year	Last Year	Period of Record, Yrs
Albuquerque Apalachicola Bismarck Boston Brownsville Cape Hatteras Caribou Charleston Columbia Dodge City El Paso Ely Fort Worth Fresno Great Falls Lake Charles Madison *Medford Miami Nashville New York Omaha Phoenix Santa Maria	23050 12832 24011 94701 12919 93729 14607 13880 03945 13985 23044 23154 03927 93193 24143 03937 14837 24225 12839 13897 94728 94918 23183 23273	53 53 53 53 53 53 53 53 53 53 53 53 53 5	75 70 75 75 75 75 75 75 75 75 75 75 75 75 75	23 18 23 15 23 23 23 23 23 23 23 23 23 23
*Seattle Wash., D.C.	24233 93734	52 54	75 75	24 22

*1952 not used; December data omitted 1968-1975 due to bad or missing data.

.

SOLMET DATA FORMAT

B E COND hm kPa °C T LOWEST SECOND THIRD FOURTH O	
Image: state of the state o	
Image: Second system Image: Second system <td></td>	
FIELD NUMBER SURFACE METEORO COR H I N E H I N E 0 C SKY E VSBY WEATHER PRESSURE TEMP WIND COR IXXXX IXXXX <td></td>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
9724 XXXXX XX XXXX XXXXX XXXX XXXX XXXX	
FIELD NUMBER FIELD NUMBER SURFACE METEOROLOGICALOBSERVATION SURFACE METEOROLOGICALOBSERVATION SURFACE METEOROLOGICALOBSERVATION SURFACE METEOROLOGICALOBSERVATION SURFACE METEOROLOGICALOBSERVATION CLOUDS COND hm kPa °C T LOWEST SECOND THIRD FOURTH O	
FIELD NUMBER FIELD NUMBER SURFACE METEOROLOGICALOBSERVATION SURFACE METEOROLOGICALOBSERVATION SURFACE METEOROLOGICALOBSERVATION SURFACE METEOROLOGICALOBSERVATION SURFACE METEOROLOGICALOBSERVATION CLOUDS COND hm kPa °C T LOWEST SECOND THIRD FOURTH O	
FIELD NUMBER	
FIELD 001 002 003 004 101 102 103 104 105 106 107 108 109 110 NUMBER SURFACE METEOROLOGICAL 0 BSERVATION O C SKY VSBY WEATHER PRESSURE TEMP WIND CLOUDS B E COND hm kPa °C T LOWEST SECOND THIRD FOURTH O	
FIELD 001 002 003 004 101 102 103 104 105 106 107 108 109 110 NUMBER SURFACE METEOROLOGICAL 0 BSERVATION O C SKY VSBY WEATHER PRESSURE TEMP WIND CLOUDS B E COND hm kPa °C T LOWEST SECOND THIRD FOURTH O	
NUMBER SURFACE METEOROLOGICAL OBSERVATION O C SKY VSBY WEATHER PRESSURE TEMP WIND CLOUDS B E COND hm kPa °C T LOWEST SECOND THIRD FOURTH O	
SURFACE METEOROLOGICAL OBSERVATION 0 C SKY VSBY WEATHER PRESSURE TEMP WIND CLOUDS 8 E COND hm kPa °C T LOWEST SECOND THIRD FOURTH 0	
O C SKY VSBY WEATHER PRESSURE TEMP WIND CLOUDS B E COND hm kPa °C T LOWEST SECOND THIRD FOURTH O	
O C SKY VSBY WEATHER PRESSURE TEMP WIND CLOUDS B E COND hm kPa °C T LOWEST SECOND THIRD FOURTH O	— 1
B E COND hm kPa °C T LOWEST SECOND THIRD FOURTH O	TS
	$ _{N} $
I SEA STA- DRY DEW- D S O A T H A T H S A T H S A T H P	0
T L LEVEL TION BULB PT. I P T M Y E M Y E U M Y E U M Y E A	W
	С
	0
	V
	Е
XX XXXX 1XXXX XXXX XXXXX XXXXX XXXXX XXXX XXXX XXXX	Е
	E R

TAPE FIELD NUMBER	TAPE POSITIONS	ELEMENT
001	001 - 004	TAPE DECK NUMBER
002	005 - 009	WBAN STATION NUMBER
003	010 - 019	SOLAR TIME
004	020 - 023	LOCAL STANDARD TIME
101 102 103 104 105 106 107 108 109, 110 111	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	EXTRATERRESTRIAL RADIATION DIRECT RADIATION DIFFUSE RADIATION NET RADIATION GLOBAL RADIATION ON A TILTED SURFACE GLOBAL RADIATION ON A HORIZONTAL SURFACE - OBSERVED DATA GLOBAL RADIATION ON A HORIZONTAL SURFACE - ENGINEERING CORRECTED DATA GLOBAL RADIATION ON A HORIZONTAL SURFACE - STANDARD YEAR CORRECTED DATA ADDITIONAL RADIATION MEASUREMENTS MINUTES OF SUNSHINE
201	075 - 076	TIME OF TD 1440 OBSERVATION
202	077 - 080	CEILING HEIGHT
203	081 - 085	SKY CONDITION
204	086 - 089	VISIBILITY
205	090 - 097	WEATHER
206	098 - 107	PRESSURE
207	108 - 115	TEMPERATURE
208	116 - 122	WIND
209	123 - 162	CLOUDS
210	163	SNOW COVER INDICATOR

TABLE II-1

NOTE: Except for tape positions 001-027 in fields 001-101, elements with a tape configuration of 9's indicate missing or unknown data.

TAPE FIELD NUMBER	TAPE POSITIONS	ELEMENT	TAPE CONFIGURATION	CODE DEFINITIONS AND REMARKS
001	001 - 004	TAPE DECK NUMBER	9724	
002	005 - 009	WBAN STATION NUMBER	01001 - 98999	Unique number used to identify each station.
003	010 - 019 010 - 011 012 - 013 014 - 015 016 - 019	SOLAR TIME YEAR MONTH DAY HOUR	00 - 99 01 - 12 01 - 31 0001 - 2400	Year of observation, 00 - 99 = 1900 - 1999 Month of observation, 01 - 12 = Jan Dec. Day of month End of the hour of observation in solar time (hours and minutes)
004	020 - 023	LOCAL STANDARD TIME	0000 - 2359	Local Standard Time in hours and minutes corresponding to end of solar hour indi- cated in field 003.
101	024 - 027	EXTRATERRESTRIAL RADIATION	0000 - 4957	Amount of solar energy in kJ/m^2 received at top of atmosphere during solar hour ending at time indicated in field 003, based on solar constant = $1377J/(m^2.s)$
				9999 = nighttime values defined as zero kJ/m^2
102	028 - 032 028 029 - 032	DIRECT RADIATION DATA CODE INDICATOR DATA	0 - 8 0000 - 4957	Portion of radiant energy in kJ/m ² received at the pyrheliometer directly from the sun during solar hour ending at time indicated in field 003.
103	033 - 037 033 034 - 037	DIFFUSE RADIATION DATA CODE INDICATOR DATA	0 - 8 0000 - 4957	Amount of radiant energy in kJ/m ² received at the instrument indirectly from reflection, scattering, etc., during the solar hour ending at the time indicated in field 003.
104	038 - 042 038 039 - 042	NET RADIATION DATA CODE INDICATOR DATA	0 - 8 2000 - 8000	Difference between the incoming and outgoing radiant energy in kJ/m^2 during the solar hour ending at the time indicated in field 003. A constant of 5000 has been added to all net radiation data.
105	043 - 047 043 044 - 047	GLOBAL RADIATION ON A TILTED SURFACE DATA CODE INDICATOR DATA	0 - 8 0000 - 4957	Total of direct and diffuse radiant energy in kJ/m^2 received on a tilted surface (tilt angle indicated in station – period of record list) during solar hour ending at the time indicated in field 003.
	048 - 062	GLOBAL RADIATION ON A HORIZONTAL SURFACE		Total of direct and diffuse radiant energy in kJ/m^2 received on a horizontal surface by a pyranometer during the solar hour end- ing at the time indicated in field 003.
106	048 - 052 048 049 - 052	OBSERVED DATA DATA CODE INDICATOR DATA	0 - 8 0000 - 4957	Observed value.
107	053 - 057	ENGINEERING CORRECTED DATA		
	053 054–057	DATA CODE INDICATOR DATA	0 - 8 0000 - 4957	Observed value corrected for known scale changes, station moves, recorder and sensor calibration changes, etc.

TABLE II-2

TAPE FIELD NUMBER	TAPE POSITIONS	ELEMENT	TAPE CONFIGURATION	CODE DEFINITIONS <u>AND REMARKS</u>
108	058 - 062 058 059 - 062	STANDARD YEAR CORRECTED DATA DATA CODE INDICATOR DATA	0 - 8 0000 - 4957	Observed value adjusted to Standard Year Model. This model yields expected clear sky irradiance received on a horizontal surface at the elevation of the station.
109, 110	063 - 072 063, 068 064-067 069-072	ADDITIONAL RADIATION MEASUREMENTS DATA CODE INDICATORS DATA DATA	0 - 8	Supplemental Fields A and B for additional radiation measurements; type of measurement specified in station-period of record list.
	NOTE FOR FI	ELDS 102-110: Data cod	e indicators are:	
		 Estimated from m Estimated from m Estimated from m Estimated from 1 Reserved for fut: 	ther model (see indi	a data
		(See model description	in Volume 2.)	
111	073 - 074	MINUTES OF SUNSHINE	00 - 60	For Local Standard Hour most closely match- ing solar hour.
201	075 - 076	TIME OF TD 1440 OBSERVATION	00 - 23	Local Standard Hour of TD 1440 Meteorologi- cal Observation that comes closest to mid- point of the solar hour for which solar data are recorded.
202	077 - 080	CEILING HEIGHT	0000 - 3000 7777 8888	Ceiling height in dekameters (dam = m x 10 ¹); ceiling is defined as sky cover of .6 or greater. 0000 - 3000 = 0 to 30,000 meters 7777 = unlimited; clear 8888 = unknown height of cirroform ceiling
203	081 - 085 081 082 - 085	SKY CONDITION INDICATOR SKY CONDITION	0 0000 - 8888	<pre>Identifies observations after 1 June 51. Coded by layer in ascending order; four layers are described; if less than 4 layers are present the remaining positions are coded 0. The code for each layer is: 0 = Clear or less than .1 cover 1 = Thin scattered (.15 cover) 2 = Opaque scattered (.15 cover) 3 = Thin broken (.69 cover) 4 = Opaque broken (.69 cover) 5 = Thin overcast (1.0 cover) 6 = Opaque overcast (1.0 cover) 7 = Obscuration 8 = Partial obscuration</pre>
204	086 - 089	VISIBILITY	0000 - 1600 8888	Prevailing horizontal visibility in hecto- meters (hm = m x 10^2). 0000 - 1600 = 0 to 160 kilometers 8888 = unlimited
		TAI	BLE II-3	

TAPE FIELD NUMBER	TAPE POSITIONS	ELEMENT	TAPE CONFIGURATION	CODE DEFINITIONS AND REMARKS
205	090 - 097 090	WEATHER OCCURRENCE OF THUNDERSTORM, TORNADO OR SQUALL	0 - 4	 0 = None 1 = Thunderstorm - lightning and thunder. Wind gusts less than 50 knots, and hail, if any, less than 3/4 inch diameter. 2 = Heavy or severe thunderstorm - frequent intense lightning and thunder. Wind gusts 50 knots or greater and hail, if any, 3/4 inch or greater diameter. 3 = Report of tornado or waterspout. 4 = Squal1 (sudden increase of wind speed by at least 16 knots, reaching 22 knots or more and lasting for at least one minute).
	091	OCCURRENCE OF RAIN, RAIN SHOWERS OR FREEZING RAIN	0 - 8	<pre>0 = None 1 = Light rain 2 = Moderate rain 3 = Heavy rain 4 = Light rain showers 5 = Moderate rain showers 6 = Heavy rain showers 7 = Light freezing rain 8 = Moderate or heavy freezing rain</pre>
		OCCURRENCE OF DRIZZLE, FREEZING DRIZZLE	0 - 6	<pre>0 = None 1 = Light Drizzle 2 = Moderate drizzle 3 = Heavy drizzle 4 = Light freezing drizzle 5 = Moderate freezing drizzle 6 = Heavy freezing drizzle</pre>
	093	OCCURRENCE OF SNOW, SNOW PELLETS OR ICE CRYSTALS	0 - 8	<pre>0 = None 1 = Light snow 2 = Moderate snow 3 = Heavy snow 4 = Light snow pellets 5 = Moderate snow pellets 6 = Heavy snow pellets 7 = Light ice crystals 8 = Moderate ice crystals Beginning April 1963 intensities of ice crystals were discontinued. All occurrences</pre>
	094	OCCURRENCE OF SNOW SHOWERS AND SNOW GRAINS	0 - 6	<pre>since this date are recorded as an 8. 0 = None 1 = Light snow showers 2 = Moderate snow showers 3 = Heavy snow showers 4 = Light snow grains 5 = Moderate snow grains 6 = Heavy snow grains Beginning April 1963 intensities of snow grains were discontinued. All occurrences since this date are recorded as a 5</pre>

since this date are recorded as a 5.

TABLE II-4

TAPE FIELD NUMBER	TAPE POSITIONS	ELEMENT	TAPE CONFIGURATION	CODE DEFINITIONS AND REMARKS
	095	OCCURRENCE OF SLEET (ICE PELLETS), SLEET SHOWERS OR HAIL	0 - 8	<pre>0 = None 1 = Light sleet or sleet showers (ice pellets) 2 = Moderate sleet or sleet showers (ice pellets) 3 = Heavy sleet or sleet showers (ice pellets) 4 = Light hail 5 = Moderate hail 6 = Heavy hail 7 = Light small hail 8 = Moderate or heavy small hail</pre>
				Prior to April 1970 ice pellets were coded as sleet. Beginning April 1970 sleet and small hail were redefined as ice pellets and are coded as a 1, 2 or 3 in this posi- tion. Beginning September 1956 intensities of hail were no longer reported and all occurrences were recorded as a 5.
	096	OCCURRENCE OF FOG, BLOWING DUST OR BLOWING SAND	0 - 5	0 = None 1 = Fog 2 = Ice fog 3 = Ground fog 4 = Blowing dust 5 = Blowing sand
				Th ese values recor ded only when visibility less than 7 miles.
	097	OCCURRENCE OF SMOKE, HAZE, DUST, BLOWING SNOW, BLOWING SPRAY	0 - 6	0 = None 1 = Smoke 2 = Haze 3 = Smoke and haze 4 = Dust 5 = Blowing snow 6 = Blowing spray
				These values recorded only when visibility less than 7 miles.
206	098 - 107 098 - 102	PRESSURE SEA LEVEL PRESSURE	08000 - 10999	Pressure, reduced to sea level, in kilo-
	103 - 107	STATION PRESSURE	08000 - 10999	pascals (kPa) and hundredths. Pressure at station level in kilopascals (kPa) and hundredths. 08000 - 10999 = 80 to 109.99 kPa
207	108 - 115 108 - 111 112 - 115	TEMPERATURE DRY BULB DEW POINT	-700 to 0600 -700 to 0600	°C and tenths °C and tenths -700 to 0600 = -70.0 to +60.0°C
208	116 - 122 116 - 118 119 - 122	WIND WIND DIRECTION WIND SPEED	000 - 360 0000 - 1500	Degrees m/s and tenths; 0000 with 000 direction indicates calm.
				0000 - 1500 = 0 to 150.0 m/s

TABLE II-5

.7

,

TAPE FIELD NUMBER	TAPE POSITIONS	ELEMENT	TAPE CONFIGURATION		CODE DEFINI AND REMARI		
209	123 - 162 123 - 124 125 - 126	CLOUDS TOTAL SKY COVER LOWEST CLOUD LAYER AMOUNT		See fol:	lowing explanator	ry "NOTES."	
	127 - 128	TYPE OF LOWEST CLOUD					
	129 - 132	OR OBSCURING PHENOMENA HEIGHT OF BASE OF LOW- EST CLOUD LAYER OR OBSCURING PHENOMENA					
	133 - 134	SECOND LAYER AMOUNT					
	135 - 136	TYPE OF SECOND CLOUD LAYER					
	137 - 140	HEIGHT OF BASE OF SECOND CLOUD LAYER					
	141 - 142	SUMMATION OF FIRST 2 LAYERS					
	143 - 144	THIRD LAYER AMOUNT					
	145 - 146	TYPE OF THIRD CLOUD LAYER					
	147 - 150	HEIGHT OF BASE OF THIRD CLOUD LAYER					
	151 - 152	SUMMATION OF FIRST 3 LAYERS					
	153 - 154	FOURTH LAYER AMOUNT					
	155 - 156	TYPE OF FOURTH CLOUD LAYER					
	157 - 160	HEIGHT OF BASE OF FOURTH CLOUD LAYER					
	161 - 162	TOTAL OPAQUE SKY COVER					
NOTES: (1)		ation and Remarks for To que Sky Cover	otal Sky Cover,	Cloud Layer A	amount, Summation	of Cloud Layer	ŝ
	o 61			n 1			

Configuration

Remarks

seen.

00 - 10	Amount of celestial dome in tenths covered by clouds or
	obscuring phenomena. Opaque means clouds or obscuration
	through which the sky or higher cloud layers cannot be se

(2) Tape Configuration and Remarks for Type of Cloud or Obscuring Phenomena.

Configuration

Remarks

00 - 16	Generic cloud type or obscuring phenomena.
	0 = None
	1 = Fog
	2 = Stratus
	3 = Stratocumulus
	4 = Cumulus
	5 = Cumulonimbus
	6 = Altostratus
	7 = Altocumulus
	8 = Cirrus
	9 = Cirrostratus
	10 = Stratus Fractus
	11 = Cumulus Fractus
	12 = Cumulonimbus Mamma

- 12 = Cumulonimbus Mamma 13 = Nimbostratus
- 14 = Altocumulus Castellanus
- 15 = Cirrocumulus
- 16 = Obscuring phenomena other than fog

TABLE II-6

16

(3) Tape Configuration and Remarks for Height of Base of Cloud Layer or Obscuring Phenomena.

	<u>Configuration</u> 0000 - 3000 7777 8888			Remarks
			Dekameters 7777 = Unlimited, clear 8888 = Unknown height or cirroform layer	
210	163	SNOW COVER INDICATOR	0 - 1	0 indicates no snow or trace of snow on ground; 1 indicates more than trace of

snow on ground.

TABLE II-7

.

TABLE III

TYPICAL METEOROLOGICAL YEARS FOR EACH OF THE SOLMET STATIONS

Location	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	F O	F 2	CF	6.6	<i>с</i> 1	6.0	F 7	5.4	67	6 F	5.0	F 4
Albuquerque	58	53	65	66	64	69	57	54	67	65	59	54
Apalachicola	60	60	64	63	67	63	58	55	66	55	59	65
Bismarck	60	71	57	54	57	75	69	55	57	68	67	67
Boston	66	53	61	60	62	65	53	56	62	57	61	61
Brownsville	64	61	56	65	71	64	61	66	68	53	68	75
Cape Hatteras	65	55	56	69	54	69	68	71	64	66	74	66
Caribou	59	70	70	69	71	53	74	53	72	73	74	60
Charleston	60	60	75	59	73	61	53	67	60	65	71	75
Columbia	65	55	54	70	58	64	62	63	67	74	71	64
Dodge City	60	73	54	62	55	63	61	60	66	54	71	67
El Paso	74	67	75	74	54	61	71	61	71	67	71	56
Ely	74	71	71	71	56	75	58	73	66	66	63	65
Fort Worth	72	61	62	66	66	59	65	55	57	68	71	62
Fresno	64	75	68	53	68	62	54	73	68	66	74	68
Great Falls	68	65	71	63	70	59	54	62	73	71	71	65
Lake Charles	67	72	56	74	64	59	63	66	64	75	58	62
Madison	65	60	72	64	53	57	73	63	58	74	65	54
Medford	66	62	53	69	64	59	69	63	62	60	62	61
Miami	62	74	67	59	64	53	57	63	57	65	61	68
Nashville	54	59	64	74	63	68	75	73	58	69	66	66
New York	58	59	59	74	74	61	60	72	58	56	71	67
Omaha	72	59	59	63	58	72	61	60	66	68	74	62
Phoenix	68	75	63	57	68	56	74	72	72	68	59	66
Santa Maria	63	59	57	57	56	64	53	62	61	62	53	62
Seattle	75	71	62	72	61	59	62	70	62	66	68	56
Wash., D.C.	65	70	6 4	67	56	68	73	65	73	75	73	61

TABLE IV-1

TRNSYS RESULTS FOR TMY AND TWENTY-TWO YEAR DATA BASE*

(MADISON, WISCONSIN)

YEAR	QCOL (GJ)	HCOL (GJ)	COL EFFIC	AVG.TANK TEMP (C)	SHAUX (GJ)	TOTAUX (GJ)	SHLOAD (GJ)	TOTLOAD (GJ)	FRACTION BY SOLAR
1953	85.69	283.80	.302	63.7	49.54	55.99	104.60	134.40	.583
1954	88.72	263.10	.337	61.7	47.74	54.06	107.10	135.90	.602
1955	88.69	287.10	.309	63.7	55.87	62.21	113.90	143.60	.567
1956	89.20	271.20	.329	63.2	53.27	59.76	112.30	142.00	.579
1957	88.57	262.30	.338	59.7	53.74	60.88	114.20	143.00	.574
1958	95.16	295.80	.322	65.4	51.82	57.63	115.10	145.10	.603
1959	88.83	272.70	.326	60.4	60.64	67.67	120.90	149.90	.548
1960	93.85	284.90	.329	61.2	54.95	61.81	119.70	148.90	.585
1961	90.45	282.30	.320	60.1	54.66	61.87	116.70	145.70	.575
1962	89.29	276.70	.323	60.8	62.14	68.92	122.60	151.50	.545
1963	88.08	292.70	.301	65.0	66.37	72.56	123.00	153.20	.526
1964	97.94	297.80	.329	64.8	45.23	50.85	111.70	141.30	.640
1965	95.80	284.90	.336	60.5	53.78	60.62	121.00	149.80	.595
1966	100.50	298.40	.337	61.0	51.80	58.48	123.20	152.20	.616
1967	93.18	270.20	.345	59.2	57.04	64.21	122.50	151.10	.575
1968	94.99	296.50	.320	64.5	48.06	53.75	111.90	141.40	.620
1969	98.18	282.70	.347	61.2	54.33	60.86	123.30	152.20	.600
1970	96.30	292.50	.329	62.4	52.07	58.51	118.40	147.70	.604
1971	93.39	294.20	.317	64.5	55.85	61.94	118.10	148.00	.581
1972	91.91	265.50	.346	59.2	65.90	73.12	130.10	158.70	.539
1973	87.00	264.20	.329	61.3	47.08	53.57	105.10	133.90	.600
1974	89.57	268.40	.334	61.4	55.31	62.06	115.70	144.90	.572
1953-1	1974								
Avera	ge 92.06	281.27	.328	62.0	54.42	60.97	116.87	146.11	.583
	ev. 4.09	12.38	.013	2.0	5.58	5.83	6.48	6.36	.028
TMY	93.00	279.70	.333	62.9	52.30	58.50	115.20	144.60	.595
*See	Table IV	-2 IOT CO.	rumn nea	ding explana	ations				

2

TABLE IV-2

COLUMN HEADING EXPLANATIONS

Useful Solar Energy Collected Amount of Solar Energy on Collector Surface Collector Efficiency (QCOL/HCOL) COL EFFIC AVG. TANK TEMP Average Tank Temperature per Year Space Heating Auxiliary Energy SHAUX SHAUX plus Domestic Heating Auxiliary Energy TOTAUX Space Heating Load SHLOAD SHLOAD plus Water Heating Load TOTLOAD FRACTION 1.- (TOTAUX/TOTLOAD) BY SOLAR

GJС

OCOL

HCOL

Gigajoules Celsius

FIGURE 1. Solar Radiation Data Rehabilitation Stations

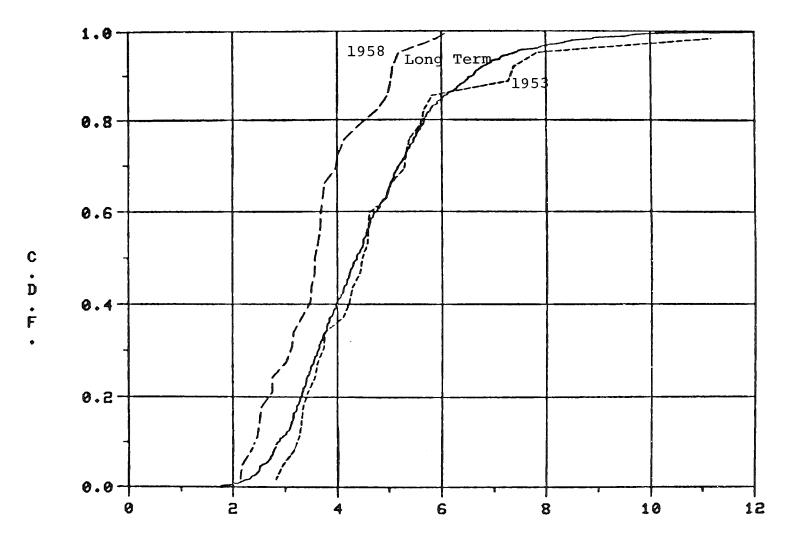


FIGURE 2. Cumulative Distribution Functions for Mean Daily Wind Velocity

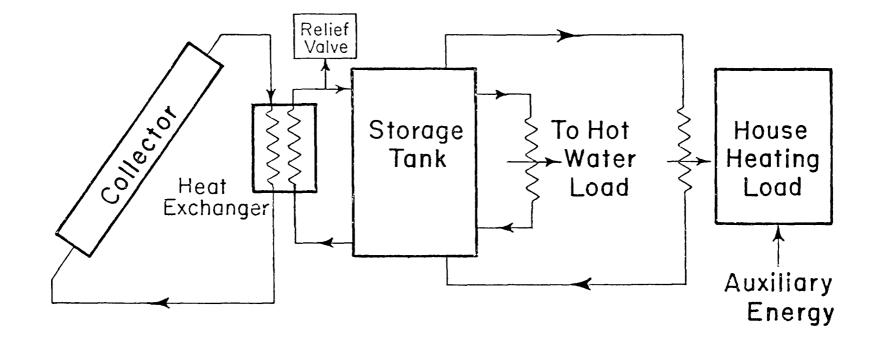


FIGURE 3. Solar Heating System Schematic

References

- 1. Degelman, L. O. (1974) "A Weather Simulation Model for Building Energy Analyses," Research Grant No. GK-31792 Dept. of Architectural Engineering, 101 Engineering "A" Building, Pennsylvania State University, University Park, PA
- 2. Finkelstein, J. M. and Schafer, R. E. (1971), "Improved Goodness-of-Fit Tests," Biometrika, Vol. 58, No. 3, p. 641-645
- 3. Lohrding, R. K. (1973) "Three Kolmogorov-Smirnov-Type One Sample Tests with Improved Properties," <u>Journal</u> of Statistical Computation and Simulation, Vol. 2, No. 2, p. 139-148
- 4. Test Reference Year (TRY) Final Report, Rational Use of Energy Pilot Study, Subproject: Climatic Conditions and Reference Year, NATO/CCMS-60, August 1977
- 5. Randall, C. M. and Whitson, M. E., "Hourly Insolation and Meteorological Data Bases Including Improved Direct Insolation Estimates," Aerospace Report No. ATR-78 (7592-1), The Ivan A. Getting Laboratories, The Aerospace Corporation, El Segundo, CA
- 6. "SOLMET Manual, Volume 2," Available from the National Climatic Center, Asheville, NC (1978)
- 7. Klein, S. A., et al, "A Method of Simulation of Solar Processes and its Application," <u>Solar Energy</u>, Vol. 17, p. 29-37, 1975

INTRODUCTION

This Appendix describes in detail the enclosed microfiche reproductions of the computer output used in the determination of the Typical Meteorological Years, as well as the computergenerated empirical cumulative distribution functions of the nine principal indices used in the selection process.

The statistics described herein should be of value to researchers in subsequent validation studies, as a capsulation of historical weather data, and as an aid to determination of solar energy system requirements.

MICROFICHE DESCRIPTION

The microfiche package comprises 26 sets representing the 26 solar rehabilitation stations. Each set consists of three separate sections and a total of five fiche per set. The following detailed descriptions of the three sections apply to each of the sets, but actual data from Set 1 (Albuquerque) are used to illustrate the discussion.

Section I. Long Term and Yearly Statistics

This section contains twelve sets of tabular computer output, one set for each month, which provides summary information for each individual year and for the composite of all years. Three types of information are provided:

- Summary information on the 13 indices: daily maximum, mean, minimum, and range for dry bulb temperature, dew point temperature, and wind velocity; and daily total global solar radiation. The summary statistics provided are the mean, median, and standard deviation of each of the 13 indices.
- 2. Finkelstein-Schafer (FS) statistics on the 13 indices and weighted sums of the 13 FS statistics. The FS statistic is a measure of the closeness of two distributions. An explanation of the FS statistic and the specific weighting used is given in the main body of this report.
- 3. The top five typical year candidates as selected by the FS statistic for solar and wind. The five years with the smallest values for FS were selected.

The first page of each set contains summary statistics of the indices over the composite of all years; solar and wind weighted FS statistics for each year; and five candidate years as selected by the FS criterion for solar and five for wind.

The remaining pages of each set give FS statistics, summary statistics, and absolute error from the composite for the mean and median for each of the individual years.

Some results from Station 23050 for January are included in order to illustrate the information provided. Note that the statistics computed for each of the indices are based on 31 daily values for January for each individual year and 713 values for the composite of all years.

In Table A-I, summary statistics on the 13 indices based on all 23 years data are provided. Also, the solar weighted and wind weighted sum of FS statistics are given for each year and the five candidate years for solar and wind are given. For example, the following information is available for daily maximum dry bulb temperature over all 23 years of January data.

Mean of 713 daily maximum temperatures is 7.5°C. a. Median of 713 daily maximum temperature is 7.8°C. Average of 23 standard deviations is 4.8°C. b.

с.

The solar weighted FS statistic for 1953 is .155 and the top five January solar year candidates are 1958, 1960, 1970, 1955, and 1968.

In Table A-II, FS statistics, means, absolute error in means, medians, absolute error in medians, and standard deviations are given for each of the 13 indices for each of the individual years. (Table A-II shows only the first 6 of the 23 years represented). For example, for maximum daily dry bulb temperature for January 1953, the following information is available:

- a. FS is .252
- b. Mean of 31 daily maximum temperatures is 12.2°C.
- Absolute deviation of the 1953 mean of daily maximums from mean of daily maximums over all с. 23 years is $4.6^{\circ}C$.
- d. Median of 31 daily maximum temperatures is 12.8^oC.
- Absolute deviation of the 1953 median of daily e. maximums from median of daily maximums over all 23 years is 5.0°C.
- Standard deviation of 31 daily maximum temperatures is $3.6^{\circ}C$. f.

Section II. Frequencies and Run Lengths

This section contains information on weather continuity, or persistence, as measured by run length and run frequency for daily mean dry bulb temperature and daily total global solar radiation in three tables per month. The first and second tables give year by year information on the number and length

of runs (consecutive days) for daily mean dry bulb temperature. The first table gives the number of runs and run length (RL) for a given year which are greater than the 67th percentile of the long term distribution. The second table gives similar information on runs below the 33rd percentile. In these tables a run length of 10 includes lengths of 10 and greater. The first table gives information on the number of relatively "warm" days in a row and the second table on the number of relatively "cold" days in a row. The third table gives the number and run length of days where the daily total global solar radiation is less than the 33rd percentile of the long term distribution.

In order to understand more easily the information provided, results from Station 23050 for January are again used. Results are given in Table A-III for daily total solar radiation. For example, from Table A-III it is seen that for 1956 there were two runs of length 1, three runs of length 2, and one run of length 6 where the daily total global solar radiation was less than the 33rd percentile for the composite of 23 years. The tables also give the average number of runs per year and the average run length. For example, from Table A-III we find

Ave. No. of runs/year =
$$\frac{127}{23}$$
 = 5.5

Ave. Run Length = [(1x75)+(2x29)+...+(10x1)]/127 = 1.9

Section III. Empirical Cumulative Distribution Functions

This section consists of nine graphs of the empirical cumulative distribution function (CDF) for each of the twelve months. The nine graphs are computed from the long term data for the nine indices: daily maximum, mean, and minimum for dry bulb and dew point temperature, daily maximum and mean wind velocity, and daily total global solar radiation.

Figure Al is an example of an empirical CDF. Again, it is the CDF for Station 23050 for January. From this table one can determine, for example, that twenty percent of the January days have a daily total global solar radiation of less than 9500 kJ/m².

STATION 23050 JANUARY DAILY LONG TERM STATISTICS

RADIATION

DAILY TOTAL

DRY BULB DEW POINT WIND VELOCITY MAX MIN MEAN RANGE MAX MIN MEAN PANGE MAX MIN MEAN RANGE

MEAN	7.5 -4.3	1.2 11.9	-5.3 -10.9 -8.1	5.6	6.4 1.1	3.4 5.3	11537.
MEDIAN	7.8 -3.9	1.7 12.2	-5.0 -10.0 -7.7	5.0	5.7 1.0	3.0 4.7	12422.
AVE. STD. DEV.	4.8 4.1	4.0 3.3	4.4 4.8 4.4	2.9	2.6 .9	1.4 2.4	2891.

SUMMARY OF SUM OF F - S STATISTICS FOR YEARS 1953 - 1964

TAB	53	54	55	55	57	58	59	60	61	62	63	64
번 년 년 Solar Weighted Sum	•135	.061	.056	•127	•1*6	.054	.068	.054	.095	.065	.086	c 1 34
⊅ WIND WEIGHTED SUM I H	.107	.101	.057	.053	•040	.045	.050	.103	•115	.045	.043	.068

SUMMARY OF SUM OF F - S STATISTICS FOR VEARS 1965 - 1975

	65	66	67	68	69	70	71	72	73	74	75
SOLAR WEIGHTED SUM	.108	•123	.104	.057	•105	.055	.095	.079	.085	.065	.118
WIND WEIGHTED SUM	.125	.176	.064	.079	.070	.082	.085	.073	•095	.050	.293

YEARS ORDERED BY F - S STATISTICS FIRST FIVE YEARS (SOLAP) 58 60 70 55 68 FIRST FIVE YEARS (WINDY 57 63 62 58 59

YEAPLY STATISTICS FOR JANUARY

		DRY	BULA			DEM P	OINT			WIND V	ELOCIT	•	RADIATIO
	MAX	MIN	MEAN	RANGE	MAX	MIN	MEAN	PANGE	MAX	MIN	MEAN	PANGE	DAILY TOT
1953													
F - S	.252	.248	.275	.088	•131	.086	.115	.044	.125	.125	.085	•116	.109
MEAN	12.2	5	5.2	12.7	-3.3	-9.2	-6.3	6.0	8.2	1.5	3.9	6.7	12712.
ABS. ERROR	4.6	3.8	4.0	. 8	2.1	1.7	1.8	. 4	1.9	.4	•5	1.4	1176.
MEDIAN	12.8	0.0	6.0	13.4	-2.8	-9.4	+6.9	4.5	8.8	1.5	3.5	7.3	12805.
ABS. ERROR	5.0	3.9	4.2	1.2	2.2	.6	.9	.5	3.1	.5	.5	2.6	383.
STD. DEV.	3.6	2.6	2.9	2.9	3.4	5.2	3.8	3.7	3.4	• 9	1.8	3.1	2056.
1954													
F - S	•121	.082	.115	.057	.107	.089	•112	.113	.057	.178	.134	.035	.016
MEAN	10.0	-2.5	3.1	12.5	-3.3	-9.3	-6.5	6.0	6.3	1.0	2.9	5.3	11551.
ABS. ERROR	2.5	1.9	1.9	.6	2.0	1.6	1.6	. 4	•1	.1	• 5	• 0	15.
MEDIAN	106	-3.3	2.8	13.3	-3.9	-8.3	-6.2	5.6	5 .1	1.0	2.5	4.6	12407.
ABS. ERROR	2.8	•6	1.1	1.1	1.1	1.7	1.5	• 5	•6	0.0	• 5	• 1	15.
STD. DEV.	4.1	3.3	3.3	3.2	3.1	3.5	3.4	1.7	2.4	• 5	1.3	2.3	3037.
1955													
F - S	.108	.085	•096	.088	.041	.058	.042	.067	.053	.126	.061	.050	.045
MEAN	6.5	-4.5	.7	11.0	- 4 . 4	-10.4	-7.3	5.9	7.1	1.2	3.4	5.9	11257.
ABS. ERROR	1.0	• 2	. 5	. 8	.9	.6	.8	.3	.7	.1	.0	.6	279.
MEDIAN	7.2	-4.4	.8	10.6	-5.6	-10.5	-5.1	5.0	6.7	1.5	3.3	5.1	12280.
ABS. ERROR	•6	•5	1.0	1.6	• 5	•6	. 4	• 0	1.5	.5	.3	. 4	142.
STD. DEV.	3.5	3.2	2.9	3.2	4.7	4.3	4.5	2.4	2.9	•6	1.1	2.9	3328.
1956													
F - S	•185	• 213	•255	•059	+122	.062	• 112	.104	.046	.251	.060	.047	•127
MEAN	11.0	8	4.7	11.8	-2.7	-9.1	-6.0	6.3	6.3	.7	3.1	5.6	10437.
ABS. ERROR	3.5	3.5	3.5	.0	2.6	1.9	2.1	. 8	.1	.4	.3	• 3	1100.
MEDIAN	12.2	6	4.6	12.7	-2.2	-10.0	-6.2	6.1	5.7	0.0	2.8	5.1	11884.
ABS. ERROR	4.4	3.3	2.9	• 5	2.8	0.0	1.6	1.1	0.0	1.0	. 3	.4	538.
STD. DEV.	3.6	3.2	2.5	4.3	4.4	4.3	4.2	2.7	2.6	1.0	1.2	2.1	3208.
1957													
F - S	.086	• 232	.187	.210	•172	•146	•182	.037	.030	.272	.049	.071	•144
MEAN	9.3	4	4.2	9.7	-1.8	-7.4	-4.6	5.6	5.4	• 6	3.2	5 • R	9854.
ABS. ERROR	1.8	3.9	3.0	2.1	3.5	3.5	3.5	.0	• 0	• 5	• 2	• 5	1683.
MEDIAN	9.4	6	3.9	9.4	-1.1	-8.9	-5.8	5.0	6.2	0.0	2.9	5.7	11070.
ABS. ERROR	1.6	3.3	2.2	2.8	3.9	1.1	2.0	- 0	• 5	1.0	•1	1.0	1352.
STD. DEV.	3.4	3.7	3.2	2.4	4 . 4	4.5	4.5	2.4	2.5	• 9	1.5	2.1	3810.
1958													
F - S	.075	.040	.100	.054		.071	• 06 0	.107	.044	.363	.047	·108	.045
MEAN	7.4	-3.7	1.4	11.1		-10.5	-7.2	6.3	5.7	• 4	3.2	6.3	il116.
ARS. ERROR	•1	•6	•2	.7	1.1	. 4	• 9	.7	•2	. 8	• 2	1.0	420.
MEDIAN	7.8	-3.9	2.0	11.7		-10.6	-7.8	6.1	5.7	0.0	2.9	6.2	12288.
ABS. ERROR	0.0	0.0	• 3	• 5	.5	•6	• 0	1.1	1.0	1.0	• 2	1.5	134.
STD. DEV.	3.7	3.3	2.7	3.9	3.0	3.5	2.9	2.6	2.6	.7	1.3	2.4	3174.

TABLE A-II

SOLAR PAD.<=33 PEPCENTILE	DA9 Y	, <=3.	3 PEF	PCENT	JLE																		
۹.۲.										VFAQ	0												
	53	54	55	56	57	53	59	60	61	62	63	9 19	65	65 6	67 6	8 59	0 <i>1</i> 6	171	72	73	74	75	
4	m	Q	\$	٩	*1	M	ŝ	~	t	M i	Ţ	9	∾	M	ŧ	ۍ	en en	6	₩0	£	N	M	75
~	4	~	Ð	m	Ð	Ð	F	₽	Ð	t	4	0	~	D	1	Ť.		8 2	÷	m		÷	59
٣	0	Ð	Ð	D	Ŧ	1	0	Ð	₽	Ð	0	Ð	Ð	6	0	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 1	Ð	₩	Ð	ę۰۱	¢
ۍ	0	8	2	0	•	÷1	0	Ð	0	Ð	0	Ð	÷	Ð	0	Ţ		0	Ð	0	D	Ð	Q
ſ	Ð	B	0	Ð	+	0	6	-	0	÷	e d	Ð	0	0	0		0	0 0	Ð	Þ	ч	4 -1	s
9	•	6	Ð	-	Ð	Ð	D	0	D	0	0	6	D	0	0	e		0 8	Ð	Þ	Ð	Ð	ŧ٩
~	Ð	Ð	Ð	0	•	•	Ð	0	6	0	0	D	0	•	0	0	6	0	C	e	G	0	0
¢	Ð	8	e	•	7	0	0	Ð	Ð	Ð	Ð	D	•	Ð	6	0	0	0	Ð	Ð	0	Ð	4 1
σ	Ð	63	6	0	0	6	Ð	Ð	Ð	Ð	Ð	8	Ð	E	8	D	-	ព	0	0	Ð	Ð	6
10	0	8	Ð	0	0	0	Ð	Ð	Ð	Ð	Ð	Ð	Ð	F	Ð	Ð	0	0	0	Đ	Ē	Ð	ا مه
	÷	¢	v	Q	÷	Ś	v	t	ŝ	¢	m	Q	Ś	ۍ	2	S	~	e N	4	¢	۴	Q	127
AVE.	•0N	OF R	AVE. NO. OF RUMS/YEAR	YEAR	ъ.	ۍ ا																	

JANUAPY

STATION 23050

TABLE A-III

AVF. RUN LENGTH 1.9

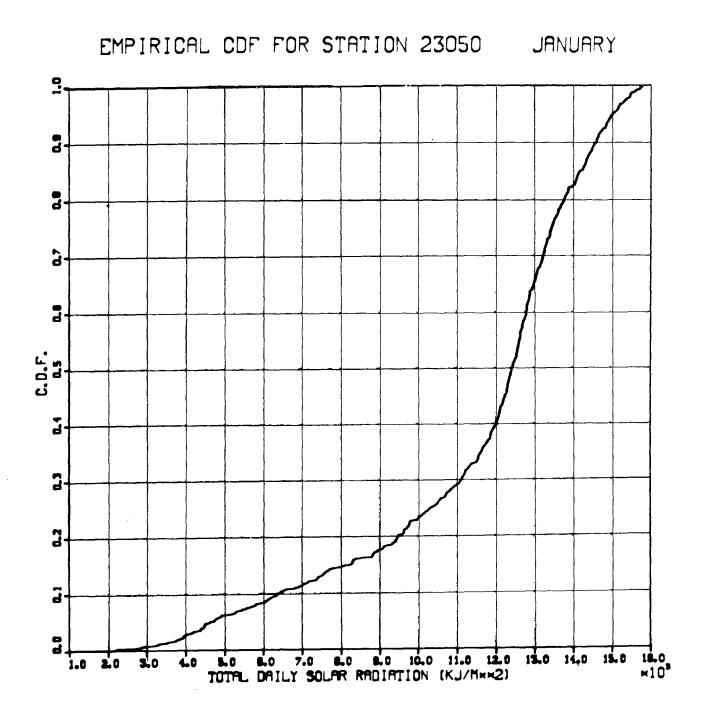


FIGURE A-1

.

.

,