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ABSTRACT

This paper describes a comprehensive set of fully automated quality assurance (QA) procedures for ob-

servations of daily surface temperature, precipitation, snowfall, and snow depth. The QA procedures are

being applied operationally to the Global Historical Climatology Network (GHCN)-Daily dataset. Since

these data are used for analyzing and monitoring variations in extremes, the QA system is designed to detect

as many errors as possible while maintaining a low probability of falsely identifying true meteorological

events as erroneous. The system consists of 19 carefully evaluated tests that detect duplicate data, climato-

logical outliers, and various inconsistencies (internal, temporal, and spatial). Manual review of random

samples of the values flagged as errors is used to set the threshold for each procedure such that its false-

positive rate, or fraction of valid values identified as errors, is minimized. In addition, the tests are arranged

in a deliberate sequence in which the performance of the later checks is enhanced by the error detection

capabilities of the earlier tests. Based on an assessment of each individual check and a final evaluation for

each element, the system identifies 3.6 million (0.24%) of the more than 1.5 billion maximum/minimum

temperature, precipitation, snowfall, and snow depth values in GHCN-Daily as errors, has a false-positive

rate of 1%22%, and is effective at detecting both the grossest errors as well as more subtle inconsistencies

among elements.

1. Introduction

One of the most active areas of climatological re-

search is the study of changes in the frequency and in-

tensity of extreme events (e.g., Nicholls 1995; Cerveny

et al. 2007; Trenberth et al. 2007). In the past, limitations

in data availability and computational resources have

frequently restricted such studies to particular countries,

regions, or individual locations. Thanks to technological

advances as well as a greater willingness of countries

to share their daily observations, it has become possible

to assemble and regularly update a global dataset of

historical daily meteorological observations. Such a data-

set, the Global Historical Climatology Network (GHCN)-

Daily, is being maintained at the National Oceanic and

Atmospheric Administration’s National Climatic Data

Center (NCDC) and has proven useful in many appli-

cations requiring daily data (e.g., Alexander et al. 2006;

Caesar et al. 2006).

GHCN-Daily consists of more than 1 500 000 000

observations at over 40 000 land-based stations, some of

which date back to the mid-1800s. The primary meteo-

rological elements represented include daily maximum

and minimum temperature (TMAX and TMIN), 24-h

precipitation (PRCP) and snowfall (SNOW) totals, and

the snow depth at a certain time of day (SNWD). The

data originate from a variety of sources ranging from

paper forms completed by volunteer observers to syn-

optic reports from automated weather stations.

With this diversity of data comes a large variety of

measurement, recording, digitization, transmission, and

processing problems (Goodison 1978; Robinson 1989,

1990; Wallis et al. 1991; Reek et al. 1992; Nicholls 1995;

Kunkel et al. 1998; Brasnett 1999; Kunkel et al. 2005;

Daly et al. 2007; Kunkel et al. 2007; Green et al. 2008).

Consequently, procedures that can ensure high-quality

historical and real-time daily data are critical. Such pro-

cedures have been implemented in the GHCN-Daily

quality assurance (QA) system.

The core of this system, consisting of 19 outlier, con-

sistency, and other checks on the five primary meteo-

rological elements, is described in this paper. Unlike
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many other QA checks, the tests described here are fully

automated but have been manually validated using the

strategies of Durre et al. (2008a, hereafter DMV08) to

ensure satisfactory performance. The paper is there-

fore intended not only for those interested in documen-

tation of the GHCN-Daily system, but also for readers in

search of a QA approach for other sets of meteorological

observations.

In section 2, the philosophy used in designing the system

is reviewed, and the overall structure of the system is de-

scribed. Sections 3–7 contain specifics about each group of

checks. The performance of the system is discussed in

section 8, and concluding remarks are offered in section 9.

2. System design

The QA of daily surface observations is frequently

performed in a semiautomatic fashion in which trained

validators examine a subset of values flagged by the au-

tomatic procedures and override the system’s decision

whenever they deem a flagged value to be valid (Guttman

and Quayle 1990; Schmidlin et al. 1995; Kunkel et al.

1998; Hubbard et al. 2005; Kunkel et al. 2005; Brunet

et al. 2006). The primary reason for this approach is that

automated procedures tend to yield a significant number

of ‘‘false positives,’’ that is, valid observations errone-

ously identified as invalid (Guttman and Quayle 1990;

Robinson 1990; Schmidlin et al. 1995; Kunkel et al. 2005).

Although effective, the semiautomatic approach is im-

practical for datasets as large as GHCN-Daily, which

must be reprocessed regularly to incorporate additional

historical and real-time data. Therefore, the challenge is

to design a QA system that, without manual interven-

tion, is effective at detecting a variety of data errors and

that has a low false-positive rate, or fraction of flagged

values that are false positives. The strategies for devel-

oping such a QA system are presented in generic form

by DMV08. The following subsections describe how the

strategies are specifically applied here and provide an

overview of the resulting system.

a. Design considerations

From a user perspective, data values can be erroneous

for a variety of reasons. Perhaps the most common at-

tribution is that a value is physically impossible or cli-

matologically implausible for the location and time of

year. Other observations might be inconsistent with those

on adjacent days or at neighboring stations. In still other

cases, values may be repeated for a period of days, or

duplicated for months or years, or simply inconsistent

with other elements. Consequently, an effective QA sys-

tem should include not only tests for outliers and spatial

inconsistencies, but a comprehensive set of procedures,

each of which is designed to detect one of these types

of data errors (Reek et al. 1992; Peterson et al. 1998;

Brunet et al. 2006; Durre et al. 2008b).

Accordingly, the GHCN-Daily QA system consists of

procedures that test for all of the above-mentioned types

of data errors. Many of these are replicates or extensions

of checks employed by others (Reek et al. 1992; Kunkel

et al. 1998; Serreze et al. 1998; Hubbard et al. 2005;

Kunkel et al. 2005), while others, such as the frequent-

value and megaconsistency checks (see below), utilize

concepts that have received little or no attention in the

peer-reviewed literature. Since the checks each have

specific data requirements that may not be fulfilled at all

locations and times, they are designed to operate inde-

pendently of one another, are arranged in a deliberate

sequence, and ignore values flagged by preceding checks

in the sequence. Given the large variability in record

length and station density in GHCN-Daily, this arrange-

ment maximizes the number of observations that can be

checked with at least one QA procedure.

A variety of observing practices also are considered

when designing the QA procedures. One of these con-

siderations pertains to the various conventions used for

ascribing daily observations to a particular calendar date.

Observations for one ‘‘day’’ typically summarize con-

ditions during a 24-h period that does not necessarily

correspond to a calendar day (i.e., from local midnight to

midnight). Depending on convention, they are assigned

to the date of either the beginning or end of this period

(Janis 2002; Kunkel et al. 2005; Green et al. 2008). The

time of day at which the 24-h period begins and ends

(i.e., the time of observation) also varies among stations

and, in some cases, even among elements at the same

station (Schmidlin et al. 1995; Wu et al. 2005). In addi-

tion, some data are affected by ‘‘shifting,’’ or the attri-

bution of a value (by either the observer or subsequent

processing) to a presumed calendar date of occurrence

(Reek et al. 1992; Kunkel et al. 2005). These variations

in reporting practices must be taken into account by QA

procedures testing for inconsistencies among elements

or stations (Schmidlin et al. 1995; Wu et al. 2005; You and

Hubbard 2006). As described in more detail in subse-

quent sections, this is accomplished in the GHCN-Daily

system by considering observations within a 3-day win-

dow centered on the day being tested.

In addition, two noteworthy observing practices affect

the design of QA procedures for precipitation-related

variables. The first is the reporting of multiday precipi-

tation and snowfall totals by some observers who were

unable to make daily measurements on one or more

preceding days. When such totals are identified as ‘‘ac-

cumulated’’ in the raw data, they are excluded from most

of the GHCN-Daily QA procedures because they do not
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conform to the same limits and rules as the standard 24-h

totals. The second precipitation-related practice is the

convention followed in some countries during certain

periods of time of reporting not only wintertime frozen

precipitation, but also summertime hail in the SNOW

and SNWD fields. Unfortunately, the electronic data

files do not include an indication of whether the reported

value is due to snow, hail, or another form of frozen

precipitation, often making it virtually impossible for

either data users or QA procedures to distinguish re-

ports of hail from the at least equally frequent, erroneous,

warm-season nonzero values in the SNOW and SNWD

fields. To obtain the highest-quality record of true snow-

fall observations possible, the QA procedures presented

here are designed to identify as errors any nonzero

SNOW and SNWD values that are reported at temper-

atures at which snow is implausible.

b. False-positive rates

Each individual check in the GHCN-Daily QA system

is required to have a false-positive rate of no more than

20%; that is, no more than one in five values flagged

is allowed to be a false positive. To ensure adherence to

this requirement, each test is applied in a preliminary

fashion to the entire GHCN-Daily dataset. Random

samples of flagged values are then manually inspected

for a range of plausible test thresholds, and the fraction

of false positives in each sample is determined as in

DMV08. The resulting sample false-positive rate, some-

times also referred to as a false-positive ratio, is consid-

ered to be an estimate of the QA check’s false-positive

rate for a given threshold, recognizing that the accuracy

of this estimate is a function of a variety of factors, in-

cluding sampling variability and the subjectivity inher-

ent in manual assessments of any kind (Kunkel et al.

2005; DMV08). In the end, the threshold yielding the

highest error detection rate without exceeding the 20%

false-positive rate limit is chosen for that QA check. A

detailed illustration of how this technique is applied to

a specific procedure can be found in DMV08.

In manually assessing the validity of a randomly se-

lected value, we employ a strategy similar to that out-

lined by Kunkel et al. (2005). Specifically, a flagged value

that is judged to be truly invalid is counted as a data

error whereas a flagged value deemed to be reasonably

plausible is counted as a false positive. A value thought

to be questionable counts as half a false positive. The

false-positive rate for a QA check is then calculated by

dividing the total number of false positives (and half

false positives) by the number of values examined.

The manual assessments are made using techniques

that proved beneficial in semiautomatic QA (e.g., Guttman

and Quayle 1990; Kunkel et al. 2005). For values from

the U.S. Cooperative Observer Network, scanned im-

ages of the original observer forms are consulted when-

ever they are available. The value in the data file is

considered to be invalid if it differs from that reported

on the corresponding observer form or if other charac-

teristics of the form (e.g., a note from the observer)

suggest instrument or observer error. Other tools are

used when no observer form is available or when an ex-

amination of the form does not point to a data problem.

For example, when evaluating a value flagged by a spatial

consistency check, mapping utilities that display the lo-

cation of the station with respect to mountains and

coastlines can be helpful in assessing the representa-

tiveness of the neighboring stations used in the check. In

other cases, examination of the data file alone can be

sufficient, such as when a temperature value of zero

flagged by an outlier check turns out to be repeated on

several days in a row.

Using a sample size of 10 values per threshold cate-

gory, 30–100 values are typically examined before choos-

ing the threshold for any check with a single test threshold.

Multiparameter checks often necessitate the inspection

of even more values. For logical checks without a test

threshold (e.g., a check for nonzero precipitation amounts

accompanied by a trace flag), a simple random 10-value

sample of all values flagged by the check is used to es-

timate whether the false-positive rate is below the de-

sired level. In the case of checks for inconsistencies

between two or more observations, the evaluation pro-

cess is also used to determine whether one or all of the

values causing the inconsistency should be flagged. In

addition, when a procedure could be prone to over-

flagging in certain regions, as might be the case for a

spatial consistency check in complex terrain, for exam-

ple, the spatial pattern of all flags set by the procedure is

examined as illustrated in DMV08.

c. Structure of the QA system

The tests in the GHCN-Daily system can be grouped

into five general categories that are executed in the

following order: basic integrity checks, outlier tests,

internal and temporal consistency checks, spatial con-

sistency checks, and ‘‘megaconsistency’’ checks. The

basic integrity checks identify cases of data duplica-

tion as well as physically implausible values. The out-

lier checks identify excessive gaps in the distributions

of data values as well as observations that deviate ex-

cessively from station-specific climatological parame-

ters. The internal, temporal, and spatial consistency

checks identify values that deviate significantly from

‘‘adjacent’’ observations in time and space. Finally, the

megaconsistency checks verify the integrity of all remain-

ing unflagged observations.
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Because each procedure ignores previously flagged

values, this overall sequence limits ‘‘collateral damage.’’

For example, an internal inconsistency check (e.g., for

TMAX , TMIN) flags all values composing the incon-

sistency; consequently, less collateral damage is done if

one value can first be flagged by another test (e.g., an

outlier test, which might determine that TMIN was er-

roneous). A second factor determining the order of pro-

cedures is the impact of data errors on statistics calculated

by the procedures. For example, the spatial consistency

checks are preceded by all but the megaconsistency

checks in an effort to reduce as much as possible the

potential influence of erroneous values at a neighboring

station on the spatial comparisons.

The following five sections describe the QA pro-

cedures in detail. Several comprehensive tables are in-

cluded, each listing the tests in the order in which they

are applied. While specifics on most tests are provided

in the main text, the reader is also referred to the tables

for actual test thresholds (and to the appendixes for

details on the more complex algorithms).

3. Basic integrity checks

The basic integrity checks are listed in Table 1. Most

of these checks [the ‘‘naught’’ (zero), duplicate, streak,

and frequent-value checks] address various forms of er-

roneous repetition or duplication of the values. The world

record exceedance checks, in contrast, identify values

that are larger or smaller than have been recorded at any

surface observing station in any nation.

a. Checks for repetition and duplication

The first type of repetition and duplication check ad-

dresses the relatively straightforward detection of erro-

neous zeros, hence the name naught checks. For example,

zero is sometimes used incorrectly as a missing value

code; consequently, both TMAX and TMIN are flagged

if both are 08C or if both are 217.88C (i.e., 08F). Like-

wise, a precipitation total (PRCP, SNOW, or SNWD) is

flagged if the value is greater than zero and the data

measurement flag indicates that only a trace of precipi-

tation was recorded.

The next type of check looks for the duplication of

sequences of data in different time periods, such as two

different years having exactly the same data, or two dif-

ferent months in the same year having exactly the same

data (Fig. 1). Such problems typically occur because of

keying, transmission, or processing errors (e.g., Kunkel

et al. 1998). Note that SNWD is not tested for duplica-

tion because there are regions in high latitudes where

the same depth can persist for more than one month at

a time.

The last type of integrity check focuses on consecutive

runs of the same value (i.e., streaks) or frequent occur-

rences of the same value (i.e., identical values that are

closely spaced in time but are not necessarily consecu-

tive). For the streak tests, values are flagged not only

if they occur on consecutive days, but also when they

continue across days for which no data are available.

For the frequent-value checks, observations are flagged

if the group overall consists of more than a specified

minimum number of observations and if those values

exceed a specified climatological percentile (see Table 1

for specifics). In both tests, the minimum number of

values that constitute an error and the method for han-

dling values of zero vary by element as illustrated in

Table 1. The precipitation time series shown in Fig. 2

is an example of a record containing both streaks and

clusters of frequent identical values. In general, the kinds

of errors most commonly detected by these checks in-

clude cases in which observer, data entry, or data pro-

cessing errors result in the replication of a particular

observation on numerous subsequent days; streaks of

temperatures equal to 08 or 217.88C not already de-

tected by preceding checks; and streaks or clusters of

incorrect missing value codes.

b. World record exceedance checks

The world record exceedance checks identify values

that cannot be valid under any circumstance, either be-

cause they are physically impossible or because they fall

outside the range of what has been observed anywhere

on the earth. The limits used, shown in Table 1, are those

defined and updated by the World Meteorological Or-

ganization World Weather/Climate Extremes Archive

(Cerveny et al. 2007).

As in Reek et al. (1992) and Feng et al. (2004), the

values flagged by these tests typically far exceed the

relevant world records and are the result of incorrect

units, undocumented or incorrect missing value codes,

and other digitization or data coding errors. Although

many of these values would also be detected by the cli-

matological outlier checks, their identification at this

stage serves two purposes. First, particularly when they

appear in groups, the exclusion of such gross errors from

the computation of climatological statistics results in a

more effective outlier check. Second, at stations with

records that are too short for calculating climatological

statistics, the world record exceedance checks allow for

the detection of at least these outliers.

4. Outlier checks

The outlier checks are listed in Table 2. Generally

speaking, an outlier is a value that does not fit the
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presumed frequency distribution at a specific location

and time of year. The most common technique for iden-

tifying outliers in meteorological data involves normal-

izing the data values using their mean and standard

deviation (STD) over a specified time interval and then

flagging those values whose z score exceeds a specified

threshold (e.g., Hubbard et al. 2005; Kunkel et al.

2005). This approach, however, has several limitations,

TABLE 1. Basic integrity checks in the core GHCN-Daily system. Procedures are listed in the order in which they are applied. In

addition to the element abbreviations defined in section 1 of the text, (0) and (21) refer to the current and previous days, respectively.

Unless otherwise noted in column 4, only the values that fail to meet the given condition are flagged.

Naught check

Variant Condition for flagging Values flagged Comment

Temperature

zeros

TMAX 5 217.88C and TMIN 5 217.88C

at U.S.-operated stations; TMAX 5 08C

and TMIN 5 08C elsewhere

TMAX and TMIN Zero is sometimes incorrectly used as

a missing value code; U.S. stations report

temperatures in 8F, which are converted

to 8C for GHCN-Daily

Trace value value .0 and data measurement

flag 5 T (trace)

PRCP, SNOW, or SNWD Trace indicates an amount smaller than

the smallest measurable amount, which

varies by element and measurement unit

Duplicate check

Variant Condition for flagging Values flagged Comment

Between entire years All values in one year 5 all

corresponding values in another year

All PRCP or SNOW

values in both years

For years with at least three

nonzero values

Between different months

within the same year

All values in one month 5 all values

in another month

Not SNWD Compares all days up to the last day

of the shorter month; minimum of

three nonzero values in the month

required for PRCP and SNOW

For the same calendar

month in different years

All values in one month 5 all values

in another month

Not SNWD Compares all days up to the last day

of the shorter month; minimum of

three nonzero values in the month

required for PRCP and SNOW

Between TMAX and TMIN TMAX 5 TMIN on 10 or more days

within a month

All TMAXs and TMINs

in a month

World record exceedance check

Variant Condition for flagging Values flagged Comment

Temperature Temperature , 289.48 or .57.78C TMAX or TMIN

Precipitation PRCP , 0 or .1828.8 mm PRCP

Snowfall SNOW , 0 or .1925 mm SNOW

Snow depth SNWD , 0 or .11460 mm SNWD

Snow depth increase SNWD(0) 2 SNWD(21) . 1925 mm SNWD(0) and SNWD(21)

Identical value–streak check

Variant Condition for flagging Values flagged Comment

Temperature 20 or more consecutive identical

TMAX or TMIN values; 10 or more

consecutive identical nonzero SNOW

values; 90 or more consecutive identical

nonzero SNWD values

TMAX, TMIN, SNOW,

or SNWD

Missing values are skipped, e.g., (32.8,

29999, 32.8) is ‘‘packed’’ into (32.8, 32.8)

Precipitation 20 or more consecutive PRCP Missing values and zeros are skipped

Identical value–frequent-value check

Variant Condition for flagging Values flagged Comment

9 or more out of 10 consecutive values are

identical and $ their respective 30th percentiles;

8 or more out of 10 are identical and $50th

percentile; 7 or more out of 10 are identical

and $70th percentile; or 5 or more out of

10 are identical and $90th percentile

PRCP Missing values and zeros are skipped;

percentiles computed as for the

percentile-based outlier check
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particularly if used as the only outlier check. First, it can

only be applied to time series that are sufficiently long

for computing the requisite climatological statistics. Sec-

ond, a z score based outlier check is prone to overflagg-

ing since even a slight skewness in the distribution can

result in a larger fraction of true data values exceeding

a certain z score than would be expected from the as-

sumption of normality (Wolter 1997; Harmel et al. 2002).

Furthermore, the approach is not at all suitable for vari-

ables such as PRCP, whose distributions are zero-bounded

and highly skewed. Therefore, the GHCN-Daily QA

system uses three types of outlier checks: ‘‘gap’’ checks

(for all elements except SNOW), the traditional z-score

check (for TMAX and TMIN), and a percentile-based

outlier check (for PRCP). (For SNOW, none of these

checks was implemented because no threshold yielded

a satisfactory false-positive rate.)

a. Gap checks

The gap checks examine the frequency distributions

of observations for individual elements and calendar

months. They flag values that compose the distribution’s

tail when the tail is unrealistically separated from the

remaining values. The gap threshold, or maximum al-

lowable separation of the tail from the remainder of the

distribution, differs among elements, but is independent

of location and time.

The algorithm first sorts all of an element’s values

observed in a particular calendar month throughout a

station’s period of record from smallest to largest. Dif-

ferences between consecutive sorted values are then cal-

culated. If a value is separated by more than the gap

threshold from the next largest value, all of the element’s

values on the far side of the gap (i.e., in the tail of the

distribution) are flagged. The definition of the tail depends

on the element being analyzed. For the zero-bounded,

positively skewed distribution of PRCP, the search for

a gap begins at the smallest nonzero value and moves

upward (Fig. 3a). When applied to TMAX, TMIN, and

SNWD, on the other hand, the procedure analyzes the

top and bottom halves of the respective distributions

separately, proceeding upward and downward from the

median. Although it is zero-bounded like PRCP, SNWD

is subjected to the two-tailed rather than the one-tailed

test because its median can exceed zero by an amount

that is greater than the gap threshold, thus allowing

for the occurrence of excessively large gaps at the low

end of the distribution (Fig. 3b) as well as the high end.

Some typical data problems detected by the gap checks

include incorrect missing value codes (Fig. 3a), incorrect

units, and SNWD values of zero when SNWD should be

missing (Fig. 3b).

b. Climatological outlier checks

The climatological outlier checks compare each ob-

servation to parameters computed from all observations

at the given location and time of year. For TMAX and

TMIN, which generally follow the normal distribution,

the z score–based approach described above is used, and

the requisite biweight means and STDs (Lanzante 1996)

are calculated from data within a 15-day window cen-

tered on each day of the year. A temperature is then

flagged if it is more than six STDs from the respective

mean. For example, the mean and STD of TMIN for

12 June at Thule, Greenland, are 21.28 and 2.438C, re-

spectively, based on all TMIN observations between

5 and 19 June during the station’s 1951–75 record. The

temperature of 219.48C found on that day in 1975 fails

this outlier check because it has a z score of 27.5.

FIG. 1. Daily maximum temperatures during April and May

1967 at Lardeau, Canada (GHCN-Daily station identifier 5

CA001144580), showing an example of data duplication identified

by the duplicate check comparing data from different months

within a year (Table 1).

FIG. 2. Time series of daily precipitation totals (dots) during

1973–76 at Balmaceda, Chile (GHCN-Daily station CI000085874),

containing 162 values of 51.1 mm that are flagged by the frequent-

value check (Table 1). As the check proceeds through the time

series (section 3a), the values are first flagged when 5 of them ex-

ceeding the 90th percentile (solid line) appear in the sequence of 10

nonzero totals stretching from 10 Jun through 9 Jul 1973.
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The percentile-based outlier check flags precipitation

totals that exceed a specified multiple of the correspond-

ing climatological 95th percentile for the calendar day

on which the total was observed (Table 2). The per-

centile is computed from nonzero daily values observed

during all available years and within a 29-day window

centered on the calendar day of the observation. (A

larger window is required than for temperature because

only nonzero values are used.) When the day’s mean

temperature is above freezing or temperature is not

available, a multiple of nine is used. For example, at

Gold Hill, Utah, the 20 August 1982 total of 238.8 mm

shown in Fig. 4 is flagged because it is more than 9 times

larger than the corresponding 95th percentile of 19.9 mm.

A smaller multiple of five is employed when the day’s

mean temperature is less than or equal to 08C. This

temperature dependence is implemented because pre-

cipitation totals tend to be less extreme at below-freezing

temperatures than under warmer conditions.

5. Internal and temporal consistency checks

The internal and temporal consistency checks are listed

in Table 3. Internal consistency checks test for violations

of logical or physical relationships between two or more

elements (e.g., TMAX , TMIN). Temporal consistency

checks, on the other hand, compare one element’s values

on consecutive days, usually to identify unrealistic spikes

or dips (Reek et al. 1992; Kunkel et al. 1998). The GHCN-

Daily QA system contains six procedures testing for a

variety of internal and temporal inconsistencies, three

affecting temperature and three affecting the precipita-

tion variables.

a. Temperature

The inherent relationships among daily temperature

observations are particularly suitable for internal con-

sistency checks. For example, TMAX and TMIN must

be internally consistent not only on the same observa-

tional day, but also on adjacent days (Reek et al. 1992;

Kunkel et al. 1998; Easterling et al. 1999; Janis 2002).

For example, TMAX for a given observational day (i.e.,

24-h period ending at the time of observation) cannot be

below TMIN reported for the 24-h periods immediately

preceding and following that observational day. The

power of checks based on these relationships is further

enhanced if the temperature at the observation time

(TOBS) is available because this temperature, by defini-

tion, should lie between TMAX and TMIN for both the

previous and subsequent 24 h (Guttman and Quayle 1990).

In the GHCN-Daily system, all possible relationships

among TMAX, TMIN, and TOBS are aggregated into

one iterative procedure that takes a holistic view of the

entire temperature time series rather than considering

individual 2- or 3-day periods at a time. This check is

described in more detail in appendix A.

Two other checks are included to test for unrealisti-

cally large swings in temperature, to the extent that

this is possible without excessively flagging actual rapid

changes of this kind. The first check, termed the spike/

dip test, identifies temperatures that are at least 258C

warmer or colder than the previous and following days.

TABLE 2. As in Table 1, but for outlier checks. The following abbreviation is used in addition to those defined in the text: z 5 z score.

Gap check

Variant Condition for flagging Values flagged Comment

Temperature Gap in distribution of TMAX or TMIN for

the station/calendar month $108C

TMAX or TMIN values on tail

side of gap

Two-tailed check (see text)

Precipitation Gap in nonzero PRCP distribution for

station/calendar month $300 mm

PRCP values above gap One-tailed check

Snow depth Gap in SNWD distribution for

station/calendar month $350 mm

SNWD values on tail side of gap Two-tailed check

Climatological outlier check

Variant Condition for flagging Values flagged Comment

Conventional jzj $ 6.0 TMAX or TMIN Requires a minimum of 100 values for

the period of record in the 15-day window

Percentile based, generic PRCP $ 9 3 95th percentile PRCP* Requires a minimum of 20 nonzero values for

the period of record in the 29-day window

Percentile based,

below freezing

PRCP $ 5 3 95th percentile and

0.5(TMAX 1 TMIN) , 08C

PRCP

* An attempt was made to also apply the percentile-based outlier check to SNOW and SNWD. However, particularly in locations where

snowfall is rare but can be heavy, this check is associated with an unacceptably high false-positive rate even for the largest ratio

thresholds. The same was true when the reference value was changed from the 95th to the 90th or 99th percentile.
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The second check, termed the lagged range test, looks

for differences in excess of 408C (i) between TMAX and

the warmest TMIN reported on the previous, same, and

following days and (ii) between TMIN and the coldest

TMAX in the 3-day window centered on the day of the

TMIN. The inclusion of the lagged comparisons in the

range check avoids the flagging of dynamically induced

temperature changes, such as those that can occur in

conjunction with frontal passages in interior North

America. (Note that there are actually six variations of

the lagged range test when TOBS is also included.)

b. Precipitation

Internal consistency checks for precipitation elements

typically include comparisons between SNOW and SNWD,

SNOW and liquid-equivalent PRCP, and SNOW and

TMIN (i.e., nonzero snowfall at temperatures considered

too warm for snow) (Reek et al. 1992; Serreze et al. 1998;

Brasnett 1999). Although generally effective, these al-

gorithms have two occasional shortcomings. First, they

are often based on empirical relationships that neglect

the many physical factors and measurement practices

affecting the accuracy of both precipitation and snowfall

measurements (Goodison 1978; Robinson 1989; Groisman

and Legates 1994; Roeber et al. 2003). Second, they gen-

erally do not take into account differences in the times at

which various elements are reported, a factor that can

lead to inconsistencies that are not the result of a data

error (Schmidlin et al. 1995).

Consequently, the precipitation consistency checks

employ the three previously listed relationships with test

thresholds that have been vetted by the threshold se-

lection process described in section 2. To take into ac-

count differences in observation time among elements,

the checks consider, in one way or another, the 3-day

window centered on the day in question. In the simplest

of these checks, a nonzero snowfall amount or increas-

ing snow depth is flagged when TMIN exceeds 78C on

the same, previous, and subsequent day. The situation is

slightly more complex when comparing two precipitation-

related variables because an event total can be split be-

tween two observational days in one variable, but not in

the other. In the SNOW–SNWD consistency check, for

example, an increase in snow depth is considered ex-

cessively large when compared with snowfall only when

it exceeds the snowfall sums for the previous plus current

and current plus subsequent days. Although quite con-

servative, this approach avoids the systematic flagging of

inconsistencies that result from differences in observa-

tion time alone.

FIG. 3. Examples of values flagged by the gap check (Table 2).

(a) Histogram of all daily precipitation totals observed in August

during the period of record (1881–2004) at Tiblisy, Georgia

(GHCN-Daily station GG000037549), where values of 999 mm

(reported on some days in August 1996 and 1997) are flagged be-

cause they differ from the next highest precipitation total ever

reported in that calendar month by more than the threshold of

300 mm. (b) Histogram of all daily snow depths observed in March

during the period of record (1975–2008) at Paxson, AK (GHCN-

Daily station USC00507097), where the values of zero (reported in

March 1982, 2004, and 2007) are flagged because they differ from

the next lowest value ever reported in that calendar month by more

than the threshold of 350 mm. In both (a) and (b), the bin size is

100 mm, and each label identifies the inclusive upper boundary of

one bin and the exclusive lower boundary of the next bin, such that

the first bin includes values equal to 0, the second bin includes

values .0 and #100 mm, etc.

FIG. 4. Histogram of daily precipitation totals reported between 6

Aug and 3 Sep throughout the 1966–90 period of record at Gold

Hill (GHCN-Daily station USC00423260) showing an outlier flag-

ged by the percentile-based climatological outlier check (Table 2).

The bin size is 5 mm, and every other bin is labeled. Each label

identifies the inclusive upper boundary of one bin and the exclusive

lower boundary of the next bin, as in Fig. 3. The total of 238.8 mm is

flagged because it is more than 9 times larger than the corre-

sponding 95th percentile of 19.9 mm.
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In general, as in Reek et al. (1992), the consistency

checks are set to flag all values involved in an incon-

sistency because the evaluation process revealed no jus-

tification for systematically incriminating only one of the

elements. The one exception is the snow–temperature

consistency check; it does not flag temperature since in

90% of the cases evaluated, it was the snowfall or snow

depth that was found to be in error.

6. Spatial consistency checks

The spatial consistency checks are listed in Table 4.

Generally speaking, these tests involve comparing an ob-

servation with concurrent observations at surrounding

sites, or ‘‘neighbors.’’ The approach usually employs a

statistical technique (such as regression or interpola-

tion) to generate an estimate at the ‘‘target’’ station and

then to flag those target values that deviate excessively

from the neighbor-based estimates (Eischeid et al. 1995;

Hubbard et al. 2005; Kunkel et al. 2005; Hubbard et al.

2007). For temperature in particular, estimates derived

from spatial regression are generally more accurate than

those produced using other methods (Eischeid et al.

2000; Hubbard and You 2005; Hubbard et al. 2007).

A disadvantage of estimation-based techniques, how-

ever, is that large differences between the estimated and

observed values may result from the failure of the esti-

mation method to accurately depict complex spatial

TABLE 3. As in Table 1, but for internal and temporal consistency checks on temperature. The numbers in parentheses refer to ranges of

days: 0 5 the day on which the check is centered; 21 5 the previous day; 1 5 the subsequent day; 21:1 5 the prior, current, and subsequent

days.

Iterative temperature consistency check

Variant Condition for flagging Values flagged

Inconsistencies among TMAX, TMIN, and TOBS In each iteration, values with the most inconsistencies

Spike/dip check

Variant Condition for flagging Values flagged

Value(0) is at least 258C larger or at least 258C smaller than value(21) and value(1) TMAX(0) or TMIN(0)

Lagged temperature range check

Variant Condition for flagging Values flagged

TMAX/TMIN TMAX(0) $ max[TMIN(21:1)] 1 408C TMAX(0) and TMIN(21:1)

TMAX/TOBS TMAX(0) $ max[TOBS(21:1)] 1 408C TMAX(0) and TOBS(21:1)

TMIN/TMAX TMIN(0) # min[TMAX(21:1)] 2 408C TMIN(0) and TMAX(21:1)

TMIN/TOBS TMIN(0) # min[TOBS(21:1)] 2 408C TMIN(0) and TOBS(21:1)

TOBS/TMAX TOBS(0) # min[TMAX(21:1)] 2 408C TOBS(0) and TMAX(21:1)

TOBS/TMIN TOBS(0) $ max[TMIN(21:1)] 1 408C TOBS(0) and TMIN(21:1)

Snow–temperature consistency check

Variant Condition for flagging Values flagged

SNOW SNOW(0) . 0 and min[TMIN(21:1)] $ 78C SNOW(0)

SNWD SNWD(0) 2 SNWD(21) . 0 and min[TMIN(21:1)] $ 78C SNWD(0) and SNWD(21)

Snowfall–snow depth consistency check

Variant Condition for flagging Values flagged

SNWD(0) 2 SNWD(21) . SNOW(0) 1 SNOW(21) 1 25 mm

and SNWD(0) 2 SNWD(21) . SNOW(0) 1 SNOW(1) 1 25 mm

SNOW(0), SNWD(0), and SNWD(21)

Snow–precipitation consistency check

Variant Condition for flagging Values flagged

SNOW with 0 PRCP SNOW(0) $ 100 mm and max[PRCP(21:1)] 5 0 SNOW(0) and PRCP(0)

SNOW/PRCP ratio SNOW(0) $ 200 mm and SNOW(0) $

100[PRCP(0) 1 PRCP(21)] and SNOW(0) $

100[PRCP(0) 1 PRCP(1)]

SNOW(0) and PRCP(0)

SNWD increase with 0 PRCP SNWD(0) 2 SNWD(21) $ 100 mm and

max[PRCP(21:1)] 5 0

SNWD(0), SNWD(21), and PRCP(0)

SNWD/PRCP ratio SNWD(0) 2 SNWD(21) $ 200 mm and

SNWD(0) 2 SNWD(21) $ 100[PRCP(0) 1 PRCP(21)]

and SNWD(0) 2 SNWD(21) $ 100[PRCP(0) 1 PRCP(1)]

SNWD(0), SNWD(21), and PRCP(0)
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relationships, such as in areas with high topographic

variability or during frontal passages (Kunkel et al. 2005;

Hubbard et al. 2007). Furthermore, accurate neighbor-

based estimates appear to be difficult to obtain for

variables with high spatial variability, such as daily pre-

cipitation (Hubbard et al. 2005; Kunkel et al. 2005). An

alternative is to perform pairwise comparisons between

each target observation and concurrent nearby observa-

tions, flagging target values that are not corroborated by

any neighbor value (Peterson et al. 1998; Higgins et al.

2000; Kunkel et al. 2005).

The GHCN-Daily system contains both estimation and

corroboration tests that are tailored to each variable.

Specifically, TMAX and TMIN are subjected to a spatial

regression check and to a corroboration check that tests

whether the temperature anomaly at the target lies sig-

nificantly outside the range of the anomalies at selected

neighbors. The primary benefit of the latter is that it is

applicable in areas where high spatial variability or in-

completeness of the data prevents the development of

a suitable regression relationship. In contrast, PRCP is

only evaluated with a modified form of the same cor-

roboration check. Finally, nonzero SNOW and increases

in SNWD are evaluated by testing whether daily mini-

mum temperatures at neighboring stations are too high

to make snowfall at the target location plausible.

a. Spatial regression check

The term ‘‘spatial regression’’ implies that a regres-

sion relationship is developed for a specific window in

time in which the temperature at the target location

functions as the dependent variable, and temperatures

at selected nearby stations serve as the independent var-

iables (Eischeid et al. 1995; Hubbard et al. 2005). In the

spatial regression check employed here, TMAX and TMIN

are analyzed separately for each station and year/month.

Each day’s estimate is an average of neighbor observa-

tions selected from a 3-day window centered on the day

in question, weighted by the simple linear regression co-

efficient and index of agreement for each target–neighbor

pair. The appropriate neighbors are chosen, and the cor-

responding regression coefficients and indices of agree-

ment are computed, for each year/month separately,

using the approach described in appendix B. To deter-

mine whether a target observation should be flagged,

both the residual and the corresponding standardized

residual (i.e., the residual normalized by the mean and

STD of all residuals within the regression window) must

exceed their respective thresholds (Fig. 5).

While this check is similar to previous implementa-

tions for estimating or assuring quality of daily tem-

peratures (cf. Eischeid et al. 2000; Hubbard et al. 2005),

it has been refined in several ways to minimize the risk of

false positives. First, rather than using the correlation or

root-mean-square error as a criterion for selecting and

weighting neighbors, the index of agreement (d) is used

here because it provides a measure of both the covar-

iation and the absolute differences between the target

and neighbor series (Legates and McCabe 1999). There-

fore, the selection of neighbors with high d values should

reduce the risk of outliers in the residual that are caused

by errors in the estimate rather than in the observation.

Second, the 3-day window is used to reduce estimation

errors that can be caused by interstation differences in

either the timing of meteorological events or the time of

observation (Wu et al. 2005; You and Hubbard 2006).

Finally, the use of the absolute threshold in addition to

the standardized threshold reduces the risk of over-

flagging when the STD of the residual is small.

TABLE 4. As in Table 3, but for spatial consistency checks. See the text for details on the selection of neighbors and for explanations of the

conditions for flagging.

Regression check

Variant Condition for flagging Values flagged

Residual $ 88C or # 288C and normalized residual $ 4.0 or #24.0 TMAX or TMIN

Spatial corroboration check

Variant Condition for flagging Values flagged

Anomaly based Anomaly at target differs by 108C from all day 0, 21, and 1 anomalies

at first 3–7 neighbors

TMAX(0) or TMIN(0) at target

Percentile based Data value at target differs from all day 0, 21, and 1 values at first 3–7 neighbors

by an amount dependent on the corresponding percent rank difference

PRCP(0) at target

Spatial snow–temperature consistency check

Variant Condition for flagging Values flagged

SNOW SNOW(0) at target . 0 and min[TMIN(21:1)] at first 3–7 neighbors $78C SNOW(0) at target

SNWD SNWD(0) 2 SNWD(21) . 0 and min[TMIN(21:1)] at first 3–7 neighbors $78C SNWD(0) and SNWD(21) at target
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b. Spatial corroboration checks

The spatial corroboration checks determine whether

the value in question falls significantly outside the range

of values reported at neighboring stations. As in the spa-

tial regression check, neighbors must be located within

75 km of the target, and each target observation is com-

pared with neighboring values at lags of 21, 0, and 1 day.

In this case, however, neighbors are selected solely based

on their physical proximity to the target station and data

availability. The test is applied only if, on each of the

days of the 3-day window, at least three neighbors are

available; if more than seven neighbors are present, only

the nearest seven are used.

For TMAX and TMIN, the check is performed on

anomalies from the long-term mean. The long-term mean

is calculated in the same manner as for the z-score-based

outlier check. A temperature is identified as an error

if the corresponding anomaly differs from all neighbor

anomalies by at least 108C (Fig. 6); that is, an error flag

is set only if none of the temperature anomalies at the

selected neighbors and within the 3-day window ‘‘cor-

roborate’’ the temperature anomaly at the target loca-

tion. By virtue of differences in data requirements and

neighbor selection, the temperature corroboration and

spatial regression checks complement each other in an

FIG. 5. Time series containing a temperature flagged by the

spatial regression check (Table 4). (a) Daily maximum tempera-

tures at Bracketville, TX (GHCN-Daily station USC00411007),

between 17 Mar and 15 May 1991; (b) the corresponding residual

time series; and (c) the time series of standardized residuals. The

temperature of 22.28C on 28 Apr is flagged because the residual

and standardized residual on that day are greater than 88C and

4.0 standardized units, respectively. See section 6a for additional

information.

FIG. 6. Maps illustrating the spatial corroboration check on

temperature (Table 4). Shown are the daily minimum temperature

anomaly at Hackberry, LA (GHCN-Daily station USC00163979),

on 15 Feb 2002 and the daily minimum temperature anomalies to

which this ‘‘target value’’ is compared: (a) the six available neighbor

anomalies on day 21 (14 Feb); (b) the six neighbor anomalies

available on day 0 (15 Feb); and (c) the five neighbor anomalies

available on day 11 (16 Feb). The target value is indicated by an X

symbol, the neighbor values by filled circles. The target anomaly of

214.88C is flagged because it is 11.18C lower than the coldest

temperature anomaly among the neighbor values within the 3-day

window.
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important way. Since there is no need to calculate a

measure of agreement outside of the 3-day window con-

taining the value being tested, the corroboration check

can be applied at times and locations where the spatial

regression check is not applicable [e.g., where the 2-month

window required for the regression is insufficiently com-

plete or the correlation between the fit and target series

within that window is too low (appendix B)]. At the same

time, however, the spatial regression check, when ap-

plicable, is capable of detecting spatial inconsistencies

that are smaller in magnitude than those detectable with

the simple corroboration approach. As a result, each of

the two procedures detects errors not identified by the

other.

In the case of precipitation, the corroboration test is

applied to raw daily totals (Fig. 7). If the target obser-

vation falls outside the range of the neighbor values, the

difference between the target value and the next highest

or lowest neighbor value must exceed a threshold that is

inversely related to the difference between the clima-

tological percent ranks of the corresponding target and

neighbor totals (appendix C). The dependence of the

test threshold on percent rank differences implies that

considerably larger target–neighbor differences are tol-

erated when the difference in percent rank is small (e.g.,

when heavy precipitation is observed throughout the re-

gion) than when the difference in probabilities is large

(e.g., for isolated heavy totals at the target location). In

this respect, the procedure is similar to that of Kunkel

et al. (2005).

c. Spatial snow–temperature consistency check

In the spatial snow–temperature consistency check,

nonzero SNOW and an increase in SNWD are flagged

when TMIN at the nearest three–seven neighbors is at

or above 78C on the preceding, current, and subsequent

days. (TMIN at the target location is not considered.)

The procedure thus augments the snow–temperature in-

ternal consistency check by detecting nonzero SNOW

totals and SNWD increases under implausibly warm con-

ditions even when temperatures are not reported at the

target station.

A potential risk of the snow–temperature spatial

consistency check is the misidentification of valid ob-

servations as errors when the neighboring stations are

located at considerably lower elevations compared to

the target location. At least in the case of GHCN-Daily,

however, our evaluation does not indicate a systematic

occurrence of such false positives. Nevertheless, if this

procedure is applied to data in which isolated mountain

stations are common, it may be necessary to choose only

those neighbors with elevations similar to that of the

target station.

7. Megaconsistency checks

The megaconsistency checks are listed in Table 5. The

principle behind these checks is to ensure that, after all

other QA procedures have been applied, certain re-

lationships hold for each station’s entire record of un-

flagged values. There are three such checks: the extremes

megaconsistency check, the snow–temperature mega-

consistency check, and the snow season reality check.

Applied to each station and calendar month sepa-

rately (e.g., January at Jan Mayen, Norway), the extremes

megaconsistency check looks for two types of incon-

sistencies: TMINs that are higher than the highest un-

flagged TMAX for the station and calendar month and

TMAXs that are lower than the lowest unflagged TMIN

(Fig. 8). The test requires that the period of record for

the station and month contains at least 140 values of the

element whose extreme is used in the test. Note that this

test is only necessary because missing values occasion-

ally prevent the application of the corresponding in-

ternal consistency check.

Analogously, the snow–temperature megaconsistency

check flags nonzero values of SNOW and SNWD when

even the lowest TMIN ever recorded for the station and

calendar month is greater than or equal to 78C, provided

that at least 140 TMINs are available for determining

the lowest TMIN. It thus helps to identify reports of

snow at locations and times of year when temperatures

have never been cold enough to support such reports.

Last, the snow season reality check tests for nonzero

reports of SNOW during the warm half of the year at

locations where the cold half of the year has always been

snow-free. As such, it facilitates the detection of some

obviously erroneous nonzero snowfall and snow depth

values that are not detected by any of the tests involving

snow and temperature. This is the case, for example, in

areas where only precipitation-related measurements are

available.

8. System performance

The overall performance of the QA system was as-

sessed by applying the entire set of procedures to the

full GHCN-Daily dataset and analyzing the results in

two ways. First, the resulting flag rates and estimated

false-positive rates were summarized for each group of

procedures and for the system as a whole. Second, the

validity of 50 randomly chosen values (half flagged, half

unflagged) was assessed for each element. Although the

quantitative results from this final assessment are pre-

sented, emphasis is placed on the qualitative information

gained since the samples are too small to be statistically

representative of the entire dataset. (A much larger sam-

ple size would have been preferable, but it also would
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have been too large for a manual assessment to be

practical.)

Overall, 0.24% of all GHCN-Daily observations are

flagged (Table 6). The internal and temporal consistency

checks set the vast majority of these flags, roughly 0.21%

of the dataset. The basic integrity checks, flagging 0.02%

of the data, account for many of the remaining flags.

Note that these flag rates are consistent with those of

FIG. 7. Maps illustrating the spatial corroboration check (Table 4) applied to a 154.9-mm

precipitation total at Alpine, AZ (GHCN-Daily station USC00020174), on 31 Aug 1996. In

addition to this target total or its percent rank (X symbol), the maps show all neighbor in-

formation (filled circles) used in the check: (a) neighbor totals on day 21; (b) neighbor percent

ranks on day 21; (c) neighbor precipitation totals on day 0; (d) neighbor percent ranks on day 0;

(e) neighbor totals on day 11; and (f) neighbor percent ranks on day 11. The minimum ab-

solute target–neighbor percent rank difference is 26, yielding a test threshold of 120.3 mm

(appendix C). The target value is flagged because the minimum absolute target–neighbor

difference among totals is 146.5 mm and therefore exceeds the threshold.
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comparable procedures designed to detect gross data

errors and limit the number of false positives (Reek et al.

1992; Kunkel et al. 1998; Feng et al. 2004; Brunet et al.

2006).

One method for approximating the overall false-

positive rate is to sum the estimated number of false

positives from all procedures and then divide by the total

number of flagged values. When this method is applied

to the results in Table 6, approximately 1% of the flags

are estimated to be false positives. Similarly, a 2% false-

positive rate is obtained when the same method is ap-

plied to the results in Table 7 (i.e., the randomly selected

data).

Overall, it appears that no group of procedures has

a false-positive rate greater than 15% (Table 6), and the

estimated false-positive rate for each element is less than

5% (Table 7). The highest false-positive rates are asso-

ciated with the outlier checks and spatial consistency

checks (10% and 13%, respectively), although they each

flag less than 0.01% of the data. The only other pro-

cedures for which false positives were identified are the

duplicate year/month check on SNOW, the frequent-

value check, the spike/dip check, the lagged range check,

and the internal consistency check between temperature

and SNOW/SNWD.

The relative inefficiency of the popular outlier and

spatial consistency checks is consistent with the results

of other studies that have manually assessed the validity

of flags set by their QA procedures. For example, Wolter

(1997) demonstrates that the process of normalizing

values by the STD can lead to overflagging when the

distribution of measured values is skewed relative to the

normal distribution. Furthermore, Kunkel et al. (2005)

found that even for carefully designed outlier and spatial

consistency checks of various kinds, the false-positive

rate increases rapidly when the test threshold is lowered,

even when the threshold is in the extreme tail of the

distribution of the test parameter (e.g., z score . 5.0)

where only a small fraction of the values reside (Kunkel

et al. 2005). Nevertheless, the outlier and spatial con-

sistency checks are applied here with the thresholds

shown in Tables 2 and 4 because most of the errors

FIG. 8. Histograms of all January (a) daily maximum tempera-

tures and (b) daily minimum temperatures reported at Jan Mayen

(GHCN-Daily station JN000099950) illustrating the extremes mega-

consistency check (Table 5). The bin size is 58C, and every bin is

labeled. Each label identifies the inclusive upper boundary of one

bin and the exclusive lower boundary of the next bin, as in Fig. 3.

The 10.38 and 10.68C TMINs (both reported in January 1929) are

flagged by the check because they exceed the highest unflagged

January TMAX (9.58C) reported during the station’s 1921–2009

record. See section 7 and Table 5 for additional details.

TABLE 5. As in Table 1, but for megaconsistency checks.

Extremes megaconsistency check

Variant Condition for flagging Values flagged

TMAX TMAX , lowest TMIN for the station and calendar month TMAX

TMIN TMIN . highest TMAX for the station and calendar month TMIN

Snow–temperature megaconsistency check

Variant Condition for flagging Values flagged

SNOW . 0 or SNWD . 0 when lowest TMIN for station and calendar month .78C SNOW or SNWD

Snow season reality check

Variant Condition for flagging Values flagged

Northern Hemisphere SNOW . 0 (or SNWD . 0) for all days in May–October

and SNOW 5 0 (or SNWD 5 0) in November–April

SNOW or SNWD

Southern Hemisphere SNOW . 0 (or SNWD . 0) for all days in November–April

and SNOW 5 0 (or SNWD 5 0) in May–October

SNOW or SNWD
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detected by them would otherwise not be identified, and

an examination of the spatial distribution of the flags set

by these procedures revealed no significant bias that

could be the result of overflagging conditions in a par-

ticular region. The benefit of flagging these errors is

therefore assumed to outweigh the impact of the ac-

companying 10%–15% false-positive rate.

It is clear from our manual assessments of individual

procedures that whenever a test threshold is chosen,

a number of invalid values are left unflagged. Although

some of these are ultimately detected by other proce-

dures, other (typically less extreme) errors manage to

pass all of the tests. For example, multiday precipitation

totals exist that are neither identified as such accumu-

lations in the data nor sufficiently unusual in magnitude

to be detected by one of the QA procedures. In addition,

there are situations in which low temporal or spatial

resolution prevents the detection of a particular error, as

was the case for the two snow depth values judged to be

invalid during the overall evaluation (Table 7). Should

the impact of such lingering errors later be judged to be

excessive, an attempt could be made to develop addi-

tional procedures that address the specific data prob-

lems rather than relax the thresholds of existing checks

(DMV08).

9. Concluding remarks

A QA system is presented here that effectively quality

assures large datasets of daily observations of five pri-

mary temperature and precipitation elements. Although

fully automated, the system has a false-positive rate of

roughly 1%–2%, a rate much lower than that of typical

semiautomated QA procedures. This false-positive rate

is achieved by employing a set of basic integrity, outlier,

and consistency tests with complementary error detec-

tion capabilities whose design is informed by manual

assessments of the validity of samples of values they flag.

Considering both the evaluations performed during the

design of each individual check and the final overall

evaluation, a total of approximately 2000 values was

assessed prior to the deployment of the system.

When applied to NCDC’s GHCN-Daily dataset, the

system flags 0.24% of the observations, a flag rate com-

parable to that achieved by other fully automated sys-

tems designed to incur a small number of false positives.

The system’s flag rate is a function of the choice of

procedures and test thresholds, of the percentage of the

data affected by errors that these procedures can detect,

and of the spatial and temporal completeness of the data

that dictates which procedures can be applied to a par-

ticular data value. Considering the data completeness

requirements of the various types of procedures, the

system’s capability to detect data errors is maximized at

stations where all five primary elements are reported

consistently for at least 7 yr, and where at least three

neighbors with similarly complete overlapping periods

of record are available within a 75-km radius. One clear

advantage of this fully automated system is that the en-

tire dataset is processed in a uniform and reproducible

manner. In addition, the dataset can be reprocessed

whenever additional data or QA algorithms become

available or whenever existing processing procedures

are enhanced.

TABLE 6. Summary statistics about each group of checks in the

core GHCN-Daily system. Results are based on GHCN-Daily data

through 2008. The flag rate for a group represents the sum of the

flags set by each procedure in the group, divided by the total

number of values in the dataset. A group’s corresponding false-

positive rate is estimated as follows: (i) for each component check

and element, the false-positive rate obtained during the manual

threshold selection process is multiplied by the number of values

flagged by the check; then (ii) the resulting numbers of false posi-

tives are summed and divided by the total number of values flagged

by all of the procedures.

Group of procedures Flag rate

Estimated

false-positive rate

Basic integrity checks 0.0209% 3%

Outlier checks 0.0055% 12%

Internal and temporal

inconsistency checks

0.2068% 0%

Spatial inconsistency checks 0.0094% 9%

Megaconsistency checks 0.0001% 0%

All procedures 0.2427% 1%

TABLE 7. Results from assessing the validity of 25 flagged and 25

unflagged values of TMAX, TMIN, PRCP, SNOW, and SNWD in

GHCN-Daily after the QA system has been applied. ‘‘Question-

able’’ values are counted as half valid. The percentage of valid

values is the sum of the number of values not considered invalid

and 0.5 times the number of questionable values, divided by the

number of values evaluated. For flagged values, this is equivalent to

the false-positive rate. Values that are part of an inconsistency are

considered to be invalid as long as at least one value causing the

inconsistency is judged to be a data error.

Element Type of value Percent valid

TMAX Flagged 0%

Unflagged 100%

TMIN Flagged 4%

Unflagged 98%

PRCP Flagged 4%

Unflagged 100%

SNOW Flagged 0%

Unflagged 100%

SNWD Flagged 4%

Unflagged 92%

All Flagged 2%

Unflagged 99%
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The above description of the GHCN-Daily QA sys-

tem is intended first and foremost as documentation of

the methodology behind the QA flags in the GHCN-

Daily dataset (http://www.ncdc.noaa.gov/oa/climate/ghcn-

daily/). Combined with the presentation of design and

evaluation strategies in DMV08, however, it also serves

to illustrate a framework for designing and implement-

ing comprehensive automated QA systems that may

be extended to other datasets. Users interested in ap-

plying our specific programs (written in FORTRAN 95

on a Linux platform) to their own datasets may visit the

GHCN-Daily Web page for the appropriate point of

contact.
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APPENDIX A

Description of the Iterative Internal Consistency
Check on Temperature

The iterative internal consistency check evaluates each

temperature in a station’s record for violations of ex-

pected relationships with other temperatures on the same

and adjacent days. It then uses complex logic to decide

which values are in error and repeats the test until no

additional violations are found. The procedure consists

of four steps:

1) Each running pair of consecutive days is tested for

the following seven conditions, counting the number

of violations found for each element and day:
d TMAX(0) , TMIN(0) 2 18C
d TOBS(0) . TMAX(0) 1 18C
d TOBS(0) , TMIN(0) 2 18C
d TMAX(0) , TMIN(1) 2 18C
d TMIN(0) . TMAX(1) 1 18C
d TMAX(1) , TOBS(0) 2 18C
d TMIN(1) . TOBS(0) 1 18C

Here, (0) and (1) refer to the current and next days,

respectively. Note that by moving through a time

series in this fashion, comparisons are, by implica-

tion, also made between the current and previous

days. The 18C tolerance allows for minor inconsis-

tencies resulting from variations in response charac-

teristics among thermometers, which are relevant

when multiple sensors are used to measure different

types of temperature (Guttman and Quayle 1990).

2) Having proceeded through the entire time series,

the values with the largest number of violations are

flagged.

3) Steps 1 and 2 are repeated, ignoring the values flag-

ged in previous iterations, until no additional incon-

sistencies are found.

4) Should any days remain on which TMAX , TMIN,

both TMAX and TMIN are flagged on those days. In

other words, all cases with TMAX , TMIN on the

same day are flagged regardless of the magnitude of

the difference.

For illustrative purposes, consider the example shown

in Table A1. On all days listed, TMIN is less than the

corresponding TMAX, and the same day’s TOBS lies in

between. However, TMIN on 1 March is less than both

TMAX and TOBS on 28 February. Accordingly, during

the first pass of the check, TMIN on 1 March accumu-

lates two violations, while TMAX and TOBS on the

preceding day each accumulate one violation. TMIN on

1 March is then excluded from the check during the

second pass, resulting in the elimination of all violations.

Consequently, only TMIN on 1 March is flagged.

APPENDIX B

Computations for the Spatial Regression Check

The coefficients and indices of agreement required for

the spatial regression check are calculated from obser-

vations within a window stretching from 15 days before

the beginning of the month to 15 days after the end of

the month. For example, the regression relationships for

April 1991 (Fig. 5) are based on temperatures reported

between 17 March and 15 May of that year. Within each

regression window, daily estimates of TMAX and TMIN

at each station are calculated as described below.

First, suitable neighbors are chosen on the basis of

data completeness within the regression window, distance

from the target location, and their index of agreement

with the target observations in the window. A station is

TABLE A1. Sample temperature observations containing in-

ternal inconsistencies. The example is taken from Clay City, IL

(GHCN-Daily station USC001 12687). The GHCN-Daily internal

consistency check flags TMIN on 1 Mar (boldface) because it is

inconsistent with both TMAX and TOBS on 28 Feb (italics). See

the text for further details.

Date TMAX (8C) TMIN (8C) TOBS (8C)

27 Feb 1985 13.3 23.9 23.3

28 Feb 1985 21.7 27.2 26.7

1 Mar 1985 8.3 3.9 3.9

2 Mar 1985 10.0 0.6 0.6
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considered a potential neighbor if it lies within 75 km of

the target, and at least 40 days within the window con-

tain observations at both the target and the neighbor. If

more than three such neighbors are available, they are

sorted according to their index of agreement with the

target during the regression window, and the neighbors

with the seven (or fewer if seven are not available) highest

indices of agreement are chosen.

Following Legates and McCabe (1999), the index of

agreement is defined as

d 5 1.0�
�
m

i51
jy(i)� x(i)j

�
m

i51
[jx(i)� yj1 jy(i)� yj]

, (B1)

where d is the index of agreement, m is the number of

days in the window, x(i) and y(i) are the observations at

the target and neighbor on day i, and y denotes an av-

erage over all observations in the time window. Thus,

high values of d are an indication of both high correla-

tion and small absolute differences between x and y.

Each day’s estimated TMAX or TMIN at the target

station is then calculated using the following formula:

cy(i) 5

�
n

k51
[b(k) 1 a(k)x9(i, k)]d(k)

�
n

k51
d(k)

, (B2)

where dy(i) is the estimate on day i, n is the number of

neighbors, a(k) and b(k) are the slope and intercept for

neighbor k, respectively, and x9(i, k) is the observation

at neighbor k within the 3-day window centered on day

i that is closest in magnitude to the target observation on

day i. For example, if the target observation is 23.98C,

and the observations at a neighbor are 18.38, 10.68, and

7.28C on the preceding, concurrent, and subsequent days,

respectively, the 18.38C temperature would be used in

the calculation of the estimate. Once all estimates in the

regression window have been computed, the algorithm

proceeds to the actual regression check only if the esti-

mates are correlated with the observed time series at

a level of 0.8 or higher, that is, when the fit adequately

describes the variations in the target series.

The size of the regression window and radius within

which neighbors are selected are consistent with the sen-

sitivity studies of Hubbard and You (2005). Our choice

to use between 3 and 7 neighboring stations represents

a compromise among Hubbard and You’s (2005) sug-

gestion to use as many as 10 neighbors, Eischeid et al.’s

(2000) recommendation to avoid overfitting the target

series by using a maximum of 4 neighbors, and station

density throughout the record.

APPENDIX C

Steps in the Spatial Corroboration Check
on Precipitation

The following is a description of the steps involved in

the corroboration check on precipitation. An illustrative

example is shown in Fig. 7.

Each precipitation total with sufficient nearby obser-

vations is tested as follows:

1) A ‘‘minimum absolute target–neighbor difference’’

is obtained from the pairwise differences between the

precipitation total being evaluated and each neighbor

total within the 3-day window. If the target obser-

vation exceeds the largest neighbor value or is less

than the smallest neighbor value, the minimum target–

neighbor difference is set to the absolute value of the

pairwise difference that is the smallest in magnitude;

otherwise, it is set to zero.

2) The minimum absolute target–neighbor difference is

then also determined from the climatological percent

ranks of the respective totals. Each percent rank is

the rank (in percent) of the total among all nonzero

values observed throughout the station’s period of

record during a 29-day window centered on the rele-

vant day, provided that at least 20 nonzero values are

present within the window during all years combined.

3) If sufficient data are available to calculate the mini-

mum absolute percent rank difference, the target

total is flagged if the minimum absolute difference

among totals exceeds the following test threshold:

Threshold 5�45.72 lnD
rank

1 269.24, (C1)

where the threshold is expressed in mm, and Drank

is the minimum absolute target–neighbor difference

based on percent ranks. The threshold function was

derived by performing a threshold selection evalua-

tion (DMV08) in three categories of Drank (0%–5%,

40%–60%, and 90%–99%), choosing a threshold in

each category that yielded a 20% false-positive rate,

and fitting a logarithmic function to the resulting

three sets of (Drank threshold) pairs.

4) If percent ranks are not available for either the target

total or a sufficient number of neighbors, as might be

the case for very short records or in extremely dry

regions, the test threshold is set to the maximum of

the above function, or 269.24 mm. Although quite
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crude, a comparison of the minimum absolute target–

neighbor difference to this threshold nevertheless al-

lows for the detection of extremely egregious spatial

inconsistencies.
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